165 research outputs found

    The onset of flysch sedimentation in the Kaoko Belt (NW Namibia) – Implications for the pre-collisional evolution of the Kaoko–Dom Feliciano–Gariep orogen

    Get PDF
    Detrital zircon provenance study of a metamorphosed sedimentary succession in the eastern part of the Kaoko Belt in Namibia has revealed two distinct sources for the Neoproterozoic sedimentation along the southwestern Congo Craton margin. The lower part of the succession shows detrital zircon ages consistent with erosion of Paleoproterozoic basement of the Congo Craton with an inferred Mesoproterozoic volcano-sedimentary cover. Within the middle part of the succession, which includes glaciogenic sediments correlated with the Sturtian (717–660 Ma) glaciation, the Mesoproterozoic zircon grains disappear and the signal is dominated by ages known from the Congo Craton basement. The sedimentation in these parts of the succession is interpreted as related to the early Neoproterozoic rifting. The sedimentary rocks in the top part of the profile contain only subordinate proportion of the Paleoproterozoic–Archaean zircon grains and the populations are dominated by three age groups of ca. 1.0–1.2 Ga, ca. 800–750 Ma and ca. 650 Ma, consistent with erosion of the Punta del Este–Coastal Terrane exposed in the centre of the Kaoko–Dom Feliciano–Gariep orogen. An associated glaciogenic horizon interpreted as reflecting the Marinoan (645–635 Ma) glaciation constrains the sedimentation in the upper part of the succession and suggests a short time span between the high-grade metamorphism/magmatism in the Punta del Este–Coastal Terrane and its exhumation. Sedimentary rocks with such detrital zircon pattern appear also in the Damara and Gariep belts. Their source in the western part of the Kaoko–Dom Feliciano–Gariep orogen suggests that they represent an early orogenic flysch that originated during early collision in the western part of the orogen. The short time span between the metamorphism/magmatism in the Punta del Este–Coastal Terrane and deposition of the early orogenic flysch derived from it suggests that the Coastal Terrane was never separated from the Congo Craton by an oceanic domain. The estimated time span between the end of lithospheric stretching and sedimentation of the early flysch suggests that the hypothetical Adamastor Ocean separating the western and eastern forelands of the Kaoko–Dom Feliciano–Gariep orogen must have been small.acceptedVersio

    Combined garnet and zircon geochronology of the ultra-high temperature metamorphism: Constraints on the rise of the Orlica-Śnieżnik Dome, NE Bohemian Massif, SW Poland

    Get PDF
    Garnet and zircon geochronology combined with trace element partitioning and petrological studies provide tight constraints on evolution of the UHT-(U)HP terrain of the Orlica-Śnieżnik Dome (OSD) in the NE Bohemian massif. Lu-Hf dating of peritectic garnet from two mesocratic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma recording peak 2.5 GPa pressure and 950 °C temperature. In situ, U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 341.9 ± 3.4 Ma. Ti-in-zircon thermometry indicates crystallization at 810–860 °C pointing to zircon formation on the retrograde path. Lu partitioning between garnet rim and zircon suggest equilibrium growth and thus U-Pb zircon age constrain the terminal phase of garnet crystallization which lasted about 6 Ma. All Sm-Nd garnet ages obtained for mesocratic and mafic granulites are identical and consistently younger than the corresponding Lu-Hf dates. They are interpreted as reflecting cooling of granulites through the Sm-Nd closure temperature at about 337 Ma. The estimated PTt path documents the ca. 10 Ma evolution cycle of the OSD characterized by two distinct periods: (1) 347 - > 342 Ma period corresponds to nearly isothermal decompression resulting from crustal scale folding and vertical extrusion of granulites, and (2) at > 342–337 Ma which corresponds to a fast, nearly isobaric cooling.This study was financed by Polish Ministry of Science and Higher Education grant No. N N307 057734 and financially supported by Polish Academy of Sciences, Institute of Geological Sciences grant No. HPT. R. Anczkiewicz acknowledges funding from internal IGS PAS grant. The research of J. Szczepanski was funded by the University of Wroclaw grant 1017/S/ING

    Basement provenance revealed by U-Pb detrital zircon ages: A tale of African and European heritage in Tuscany, Italy

    Get PDF
    A new data set of ca. 500 LA-ICP-MS U-Pb detrital zircon ages for six metasedimentary units from the Tuscan basement (Apuan Alps, Monti Pisani, Monticiano-Roccastrada), along with a precise SHRIMP U-Pb crystallization age of a metavolcanic unit (Apuan Alps) have been collected to determine their depositional ages and provenance. These results have been integrated with the recently published ca. 900 U-Pb detrital zircon ages from Elba Island to draw a complete picture of the Paleozoic journey of the Tuscan basement. A major change in the sources supplying sediments to the Tuscan basins is shown to occur during this journey. Detrital zircon ages of early Cambrian to middle Ordovician metasediments mirror those of coeval northern Africa sediments: most samples were sourced in western Africa, while one sample is derived material from central northern Africa. The Tuscan block was therefore located at the peri-Gondwana margin, close to central northern Africa. The prominent mid-Ordovician magmatic arc activity (ca. 460. Ma) at the northern Gondwana margin and its detritus, characterise the zircon age distribution of Ordovician and Silurian volcano-sedimentary rocks, that were therefore generated at the northernmost Gondwana margin during subduction and subsequent initial Paleotethys rifting. The Carboniferous-Permian metasediments are dominated by populations of Ordovician and Variscan-age zircons, with a minor occurrence of Neoarchean and Paleoproterozoic zircons that is best explained by recycling of European Neoproterozoic-Cambrian metasediments. In summary, the main sources supplying the Tuscan basins were located in northern Africa throughout Cambrian-Ordovician times, shifting to the volcanic arc active at the northern Gondwana margin during the middle Ordovician. During Variscan and post-Variscan times, detrital zircon sources were mostly located in European terrains, witnessing the shift of Tuscany from Africa to Europe

    Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, central Europe)

    Get PDF
    The Rychlebské hory Mountain region in the Sudetes (NE Bohemian Massif) provides a natural laboratory for studies of postorogenic landscape evolution. This work reveals both the exhumation history of the region and the paleoactivity along the Sudetic Marginal Fault (SMF) using zircon (U-Th)/He (ZHe), apatite fission track (AFT), and apatite (U-Th)/He (AHe) dating of crystalline basement and postorogenic sedimentary samples. Most significantly, and in direct contradiction of traditional paleogeographic reconstructions, this work has found evidence of a large Cretaceous sea and regional burial (to >6.5 km) of the Carboniferous-Permian basement in the Late Cretaceous (~95–80 Ma). During the burial by sediments of the Bohemian Cretaceous Basin System, the SMF acted as a normal fault as documented by offset ZHe ages across the fault. At 85–70 Ma, the basin was inverted, Cretaceous strata eroded, and basement blocks were exhumed to the near surface at a rate of ~300 m/Ma as evidenced by Late Cretaceous–Paleocene AFT ages and thermal modeling results. There is no appreciable difference in AFT and AHe ages across the fault, suggesting that the SMF acted as a reverse fault during exhumation. In the late Eocene–Oligocene, the basement was locally heated to <70°C by magmatic activity related to opening of the Eger rift system. Neogene or younger thermal activity was not recorded in the thermochronological data, confirming that late Cenozoic uplift and erosion of the basement blocks was limited to less than ∼1.5 km in the study area

    Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS

    Get PDF
    Author Posting. © Elsevier B.V. , 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 253 (2008): 102-113, doi:10.1016/j.chemgeo.2008.04.017.We have developed a technique for the accurate and precise determination of 34S/32S isotope ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We have examined and determined rigorous corrections for analytical difficulties such as instrumental mass bias, unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric interferences from O2+. Standard–sample bracketing is used to correct for the instrumental mass bias of unknown samples. Blanks on sulfur masses arising from memory effects and residual oxygen-tailing are typically minor (< 0.2‰, within analytical error), and are mathematically removed by on-peak zero subtraction and by bracketing of samples with standards determined at the same signal intensity (within 20%). Matrix effects are significant (up to 0.7‰) for matrix compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur isotope compositions are best determined using purified (matrix-clean) sulfur standards and sample solutions using the chemical purification protocol we present. For in situ analysis, where the complex matrix cannot be removed prior to analysis, appropriately matrix-matching standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with conventional techniques using matrix-clean analytes. Our method enables solid samples to be calibrated against aqueous standards; a consideration that is important when certified, isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. Further, bulk and in situ analyses can be performed interchangeably in a single analytical session because the instrumental setup is identical for both. We validated the robustness of our analytical method through multiple isotope analyses of a range of reference materials and have compared these with isotope ratios determined using independent techniques. Long-term reproducibility of S isotope compositions is typically 0.20‰ and 0.45‰ (2σ) for solution and laser analysis, respectively. Our method affords the opportunity to make accurate and relatively precise S isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate for geologic samples with complex matrix and for which high-resolution in situ analysis is critical.Support was provided by National Science Foundations grants OCE-0327448 to P.R.C. and W.B. and OCE-0622982 to O.J.R. Support for L.A.B. was provided by the Woods Hole Oceanographic Institution Plasma Facility Development Grant (NSF-EAR/IF-0318137)

    Triassic sedimentation and postaccretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China

    Get PDF
    Detrital zircon U-Pb dating of the Xingfuzhilu Formation in southern Inner Mongolia yields a maximum depositional age of around 220 Ma. The predominantly Permian and Triassic zircons are characterized by oscillatory zoning and euhedral shapes, with mostly positive zircon εHf(t) values (+2.0 to +16.4), indicating that they were derived from a proximal magmatic source. Early-Middle Paleozoic zircons have variable zircon εHf(t) values from −6.2 to +11.2 and are characterized by weak oscillatory zoning and subhedral-subrounded shapes, suggesting that the sources are a proximal magmatic arc, possibly mixed with components of the Ondor Sum magmatic arc and the magmatic arc at the northern margin of the North China Craton. The remnants of Precambrian blocks in the southeastern Central Asian Orogenic Belt (CAOB), and the North China Craton may also have been a minor source region for the Xingfuzhilu succession. These results, combined with regional data, indicate that a closing remnant ocean basin or narrow seaway possibly existed in the Middle Permian (Guadalupian) immediately prior to final collision of the CAOB and closure of the Paleo-Asian Ocean. Subsequent collision resulted in the crustal uplift and thickening along the Solonker suture zone, accompanied by possible slab break-off and lithospheric delamination during the Latest Permian to Middle Triassic. The resultant orogen in the Late Triassic underwent exhumation and denudation of rocks in response to the postorogenic collapse and regional extension. Vertical crustal growth in the Triassic is documented by detrital zircons from the Xingfuzhilu Formation and appears to have been widespread across entire eastern CAOB

    Racionalizace výroby radiátorových článků

    No full text

    New U-Pb zircon and <sup>40</sup>Ar/<sup>39</sup>Ar muscovite age constraints on the emplacement of the Lizio syn-tectonic granite (Armorican Massif, France)

    No full text
    LA-ICP-MS U-Pb analyses performed on zircon grains from the Lizio granite yielded an emplacement age of 316 ± 6 Ma. Typical S-C structures show that the Lizio granite was emplaced contemporaneously with dextral shearing along the northern branch of the South Armorican Shear Zone and that it was therefore active at that time. 40Ar/39Ar analyses performed on muscovite grains yielded plateau dates ranging between 311.5 and 308.2 Ma. Muscovite chemistry is typical of primary magmatic muscovite, which precludes a late fluidsinduced resetting of the K-Ar isotopic system. 40Ar/39Ar dates thus likely correspond to the cooling ages below the argon closure temperature. Considering the uncertainties on the measured ages, we can propose that either the Lizio granite cooled down quickly in less than a million of years or that it remained in a hot environment for several millions of years after its emplacement. This latter scenario could have been sustained by shear heating during dextral shearing along the northern branch of the South Armorican Shear Zone
    corecore