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We have developed a technique for the accurate and precise determination of 34S/32S isotope 

ratios (δ34S) in sulfur-bearing minerals using solution and laser ablation multiple-collector 

inductively coupled plasma mass spectrometry (MC-ICP-MS).  We have examined and 

determined rigorous corrections for analytical difficulties such as instrumental mass bias, 

unresolved isobaric interferences, blanks, and laser ablation- and matrix-induced isotopic 

fractionation. Use of high resolution sector-field mass spectrometry removes major isobaric 

interferences from O2
+. Standard–sample bracketing is used to correct for the instrumental mass 

bias of unknown samples. Blanks on sulfur masses arising from memory effects and residual 

oxygen-tailing are typically minor (< 0.2 ‰, within analytical error), and are mathematically 

removed by on-peak zero subtraction and by bracketing of samples with standards determined at 

the same signal intensity (within 20 %). Matrix effects are significant (up to 0.7 ‰) for matrix 

compositions relevant to many natural sulfur-bearing minerals. For solution analysis, sulfur 

isotope compositions are best determined using purified (matrix-clean) sulfur standards and 

sample solutions using the chemical purification protocol we present. For in situ analysis, where 

the complex matrix cannot be removed prior to analysis, appropriately matrix-matching 

standards and samples removes matrix artifacts and yields sulfur isotope ratios consistent with 

conventional techniques using matrix-clean analytes. Our method enables solid samples to be 

calibrated against aqueous standards; a consideration that is important when certified, 

isotopically-homogeneous and appropriately matrix-matched solid standards do not exist. 

Further, bulk and in situ analyses can be performed interchangeably in a single analytical session 

because the instrumental setup is identical for both. We validated the robustness of our analytical 

  



method through multiple isotope analyses of a range of reference materials and have compared 

these with isotope ratios determined using independent techniques. Long-term reproducibility of 

S isotope compositions is typically 0.20 ‰ and 0.45 ‰ (2σ) for solution and laser analysis, 

respectively. Our method affords the opportunity to make accurate and relatively precise S 

isotope measurement for a wide range of sulfur-bearing materials, and is particularly appropriate 

for geologic samples with complex matrix and for which high-resolution in situ analysis is 

critical.  
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Sulfur is widely distributed throughout the environment. Principally, sulfur occurs as sulfate in 

open, oxygenated seawater, while H2S and other reduced sulfide species reside in anoxic basins 

and sediment porewaters. In sediments, igneous and metamorphic rocks and metal-rich ore 

deposits, sulfur occurs in various oxidation states, such as sulfate, elemental sulfur and numerous 

metal sulfides. Variations in sulfur isotopic compositions of these reservoirs can be large (on the 

order of δ34S ~ 20 – 50 ‰ (Faure, 1986; Hoefs, 1997)) and so they serve as key tracers of 

sources and cycling of sulfur species in biological and geochemical processes (Thode et al., 

1961; Goldhaber and Kaplan, 1974; Ohmoto and Rye, 1979; Canfield, 2001; Shanks, 2001).  

 

Conventionally, measurements of sulfur isotope ratios are performed using gas-source mass 

spectrometry (GS-MS) in which sulfur is introduced as gaseous SO2 or SF6 (Thode et al., 1961; 

Fritz et al., 1974; Robinson and Kusakabe, 1975; Rees, 1978). The latter is preferred for high-

precision S isotope analysis because SF6 has no spectral interferences from oxygen species and 

no memory effects (Rees, 1978). However, sample preparation for GS-MS is complex and time-

consuming (Thode et al., 1961). Online elemental-analyzer isotope-ratio mass spectrometry (EA-

IRMS) has been more recently developed to automate the combustion formation and 

chromatographic purification procedures for a SO2 gas source (Giesemann et al., 1994; 

Grassineau et al., 2001; Studley et al., 2002) and is now a widely-used technique for sulfur 

isotopic measurements. This approach has reduced minimum sample mass requirements (< 1 mg 

S) and expedited sample throughput. For GS-MS, δ34S ratios are commonly determined on 

masses 66 (34S16O2
+) and 64 (32S16O2

+). Variations of 18O/16O contributing to the isotopic 

  



composition of the SO2 analyte are often not reproducible and poorly constrained using 

automated preparation systems and have resulted in calculated δ
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34S values in error by up to 1 – 3 

‰ (Fry et al., 2002). Thus, manual preparation of SO2 is still required in many cases in order to 

obtain the necessary precision and accuracy for S isotope analysis. A procedure that minimizes 

sampling handling and accelerates analysis, but enables high-precision isotope measurements, is 

highly desirable. 

 

Alternative methods, such as ion microprobe (Chaussidon et al., 1987; Eldridge et al., 1987; 

Paterson et al., 1997; Mojzsis et al., 2003) and laser probe coupled to GS-MS (Shanks et al., 

1998; Hu et al., 2003) have been developed for in situ measurement of S isotopes at increased 

spatial resolution to obtain information about biogeochemical processes that cannot be gained 

through bulk analytical measurements. These techniques alleviate the need for extensive sample 

preparation and so reduce minimum sample size and expedite sample throughput. However, they 

are subject to shortcomings including significant instrumental mass bias resulting from matrix 

effects. Consequently, it is necessary to have isotopically homogeneous and well-characterized, 

matrix-matched mineral standards, which are not available for all materials (Paterson et al., 

1997; Riciputi et al., 1998). Multiple-collector thermal ionization mass spectrometry (MC-

TIMS) has also been examined to measure precise S isotope ratios (Mann and Kelly, 2005). The 

use of a sulfur double-spike as an internal standard for MC-TIMS alleviates the need for 

homogeneous, matrix-matched external standards (Mann and Kelly, 2005). This method allows 

precise determination of S isotope ratios at small sample sizes (< 100 µg S). However, the 

addition of the double-spike technique requires the sample be in solution form and so the 

benefits of in situ analysis without sample preparation are lost. 
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Inductively coupled plasma mass spectrometry (ICP-MS) is increasingly becoming used as a tool 

for the measurement of stable isotope systems (Halliday et al., 1998; Albarède and Beard, 2004; 

Anbar and Rouxel, 2007). ICP-MS instruments are compatible with numerous sample 

introduction schemes, including solution (bulk) analysis and laser-ablation (in situ) analysis, 

which are not available for other techniques. ICP-MS represents a promising technique for the 

analysis of sulfur isotopes at sample masses (~ 10 µg S) similar to other techniques (Menegário 

et al., 1998; Mason et al., 1999; Prohaska et al., 1999; Krupp et al., 2004; You and Li, 2005; 

Clough et al., 2006; Mason et al., 2006). Measurement of S isotopes by single-collector ICP-MS 

is obtained sequentially and vriability of plasma conditions (e.g., efficiency of ionization, ion 

beam extraction) can significantly degrade the measurement of isotope ratios. The overall 

precision achievable by this method is typically greater than 2 to 5 ‰ (Jarvis et al., 1992; 

Menegário et al., 1998; Evans et al., 2001) and is not sufficient to resolve all sulfur isotope 

variations occurring in nature. The introduction of multiple collector ICP-MS technology has 

enabled simultaneous measurement of multiple isotopes, providing precise and rapid isotope 

ratio determination. Precision better than 1 ‰ is now obtainable for δ34S isotope ratios (Clough 

et al., 2006; Mason et al., 2006). Implicit in the accurate and precise determination of isotope 

ratios by MC-ICP-MS is an appropriate correction for instrumental mass discrimination. To date, 

external normalization (Rehkämper and Halliday, 1998; Maréchal et al., 1999) using either 

37Cl/35Cl or 30Si/29Si isotope spikes has been preferred for S isotopes studies (Clough et al., 2006; 

Mason et al., 2006). However, it has not been sufficiently demonstrated that external 

normalization is appropriate for mass bias correction for all sulfur-bearing samples with a range 

of matrix, particularly for laser ablation MC-ICP-MS where the matrix cannot be removed prior 

  



to analysis. Our limited understanding of the effects of matrix for S isotope determination greatly 

limits the current application of solution and laser ablation MC-ICP-MS .  
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Development of a new analytical technique for sulfur isotope measurement is motivated by the 

need for rapid, versatile, precise and accurate in situ and bulk characterization of sulfate (e.g., 

anhydrite, barite, gypsum) and sulfide minerals (e.g., pyrite, chalcopyrite), widespread in the 

environment. Here, we present a detailed description of sulfur isotope measurement of sulfate 

and sulfide by solution and laser-ablation MC-ICP-MS. We examine potential difficulties 

associated with this technique, including instrumental and laser-ablation induced mass 

fractionation, isobaric interferences, blank contributions and matrix effects, and detail 

approaches to correct for these artifacts, enabling higher-precision measurements. This new 

contribution affords the possibility to carry out accurate and precise S isotope measurements for 

a range of sulfur-bearing materials both by bulk analysis and in situ at sub-millimeter spatial 

scales and should be of interest to a variety of geological and geochemical studies. 

 

2. Analytical Methods 

 

2.1. Preparation of reagents, standards and blanks 

All bottles and vials used for sample preparation and storage were cleaned for a 24 h period in 

Fisher TraceMetal grade 20 % hydrochloric acid and rinsed three times with 18 MΩ cm Milli-Q 

water. All standard and sample solutions were prepared for analysis as matrix-matched, purified 

S solutions stabilized in 2 % (w/w) nitric acid (HNO3). Either SeaStar BaselineTM (SeaStar 

Chemicals Inc., Sidney, BC Canada) or Fisher OptimaTM (Fisher Scientific Co., Agawam, MA) 

  



ultra-pure HNO3 was used. Milli-Q water used for dilutions was prepared using a Millipore 

Element de-ionizing unit operated at 18 MΩ cm.  
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Sulfur reference materials IAEA-S-1, S-2, S-4 and NBS-123 (Coplen and Krouse, 1998; Ding et 

al., 2001; Qi and Coplen, 2003) were used to calibrate laboratory (in-house) standards and to 

enable inter-laboratory comparison against the V-CDT scale.  Laboratory standard solutions 

(SAlfa and SSpex) containing 20 ppm S were prepared from high-purity solutions and used 

throughout daily analytical sessions as the isotope reference. SAlfa was prepared by gravimetric 

dilution of an AlfaAesar SpecpureTM 1000 µg ml-1 S stock (Alfa Aesar, Johnson-Matthey Co., 

Ward Hill, MA) and SSpex by gravimetric dilution of a Spex CertiPrep® 10,000 µg ml-1 S stock 

(SPEX CertiPrep Group, Metuchen, NJ). In addition, a range of geological reference samples 

with known isotope compositions were used as reference materials to enable comparison against 

isotope ratios determined using conventional analytical techniques. Two percent HNO3 blank 

solutions were prepared from the same lot to quantify sulfur blanks throughout analytical 

sessions. 

 

A mineral standard of anhydrite (CaSO4; hereafter referred to as Sch-M-2) was prepared for laser 

ablation and bulk analysis in order to cross-calibrate solution and laser techniques. The Sch-M-2 

solution was prepared by dissolving an appropriate mass of pure anhydrite in Milli-Q water and 

stabilizing the solution in ultra-pure 2 % HNO3 acid to obtain a standard containing 20 ppm S. 

For laser ablation analysis, a 2 mm thick section was cut, polished and mounted onto a standard 

(45 x 25 mm) petrographic slide; no further preparation was necessary.  

 

  



2.2. Chemical purification of reference standards and sulfide-sulfate samples 149 
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Less than 50 mg of sample was accurately weighed into a 15ml PTFE digestion vessel. Samples 

were first reacted with 5 ml of HNO3 (50 %) and taken to dryness on hot plate at less than 70 °C. 

Total digestion of the dry residue (containing abundant elemental sulfur) was obtained using 3 

ml of concentrated HNO3 and 2 mL of HCl (50 %). The solution was heated in the sealed PTFE 

container on a hot plate at a temperature of 70 °C and taken to dryness. The dry residue was fully 

dissolved with 4 mL of 2 % HNO3. During dissolution of Ag2S, insoluble white crystalline solids 

(presumably AgCl) precipitated and were separated from the solution by centrifugation.  

 

A precise solution volume, corresponding to 500 μg of S, was then purified on a cation exchange 

chromatographic column AG50-X8 (H+ form, Biorad, Hercules, CA, USA). The column was 

filled with 2.5 ml of resin (wet volume) and washed with 20 mL H2O and conditioned with 10 

mL 1.4N HNO3. The solution that passed through the column contains S and other oxyanions 

(e.g., silicic acid, phosphate, molybdate) whereas matrix elements (including sulfide- and sulfate-

forming elements Fe, Ca, Cu, Zn) are strongly adsorbed on the resin. Complete recovery of S is 

assured after washing the column with 5 ml of 2 % HNO3. The final solution was diluted with an 

appropriate amount of 2 % HNO3 to obtain a final stock containing 50 ppm S. 

 

Quantitative recovery of S is essential to avoid potential isotope fractionation of standards and 

samples during chemical processing. Loss of S can arise from volatilization of H2S, or from the 

formation of insoluble sulfate or elemental sulfur. The former is unlikely as the use of strong 

oxidizing acids (HNO3) during sample dissolution prevents the formation of volatile H2S. 

Further, complete and repeated dissolution of sulfur-bearing particles is assured prior to column 

  



purification. Dissolution yields were evaluated for pyrite by measuring Fe/S ratios in solution 

prior to S purification. In all instances, molar S/Fe ratios in solutions were 1.95 ± 0.05, consistent 

with pyrite stoichiometry and indicate no loss of S. Complete recovery of S during column 

purification is ensured by passing S as sulfate through the AG50-X8 resin and washing with 5 ml 

of 2 % HNO
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3. Yields of S are 98 ± 4 %, as calculated from purification of multiple, independent 

aliquots of the SAlfa in-house standard doped with matrix elements. The measured isotope 

compositions of the resulting purified standards are consistent within analytical uncertainties (see 

section 3.3). The procedural blank, resulting from chemical processing and purification is ~ 0.05 

% (~ 0.25 µg per 500 µg S used for column chemistry). 

 

2.3. Instrumentation and apparatus 

Isotopic measurements were performed using a NEPTUNE multiple collector inductively 

coupled plasma mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with 

nine Faraday Cups. A NewWave UP213 Nd:YAG laser was used as the ablation source for 

analysis of solid samples. Instrument settings and typical operating parameters are summarized 

in Figure 1 and Table 1. Sulfur solutions are aspirated using Ar as the nebulizer gas. A laser 

ablation cyclonic spray dual chamber (a.k.a. Stable Sample Introduction System) and PFA-50 

nebulizer (both from Elemental Scientific Inc., Omaha, NE) were used to introduce aerosols to 

the ICP torch. This spray chamber hosts an additional inlet to allow introduction of ablated 

material to the torch. The laser is connected directly to the spray chamber via 3 mm internal 

diameter Tygon tubing and uses He as the carrier gas from the laser to the ICP. The setup is such 

that laser ablation and solution aspiration can be operated simultaneously and enables laser 

particles to be efficiently mixed with an ultra-pure 2 % HNO3 blank solution prior to injection 

  



into the ICP torch. Thus, laser particles are effectively analyzed as a ‘wet plasma’ ensuring that 

ablated aerosols are closely matrix-matched to solution standards. We opt not to use ‘dry’ plasma 

conditions (Mason et al., 2006) because this limits the application of the method to in situ 

analysis only. Sulfur is highly volatile and, therefore, passing solutions through a desolvating 

nebulizer to obtain dry plasma conditions is not viable for bulk analysis. Our setup allows for 

interchangeable bulk and in situ S isotope measurement. 
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Operating parameters for laser analysis are optimized in order to provide the most stable signal 

intensities during ablation. The laser is operated in apertured mode, with a spot size of 60 µm 

and a minimum total signal intensity of 10 volts (32S signal). The power output of the laser is 

adjusted so as to ensure that the signal intensity of the ablated sample and bracketing solution 

standard are the same, typically with less than 20 % difference. A line scan (‘raster’) protocol is 

used in preference to a single crater mode in order to obtain a higher and more uniform rate of 

material removal with respect to time.  The raster mode utilizes a movable sample stage under a 

fixed laser beam to generate the desired raster pattern. The size of the trench formed during 

ablation is ~ 200 x 100 µm in cross-sectional area and ~ 250 µm deep. A scan speed of 5 µm s-1 

is used during ablation and yields an ablation removal rate for the sample of ~ 60 ng s-1. Total 

acquisition time is ~ 4 minutes and results in ablation of ~ 15 µg of sample. The signal intensity 

is monitored to ensure that transport of sample into the ICP-MS does not significantly diminish 

as material is ablated during analysis. 

 

2.4. Isotope measurement and data acquisition  

  



Isotope ratio measurements are performed in high mass resolution mode in order to separate 

sulfur from potential interfering species (Table 2). Isotopic measurements are performed on 

masses 
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32S, 33S and 34S. Molecular interferences from 16,17,18O2 are heavier than elemental 

species, so isotopes of sulfur are determined free from molecular interferences on the low mass 

shoulder of interfering species (Figure 2). Data are not reported for 36S because of the low 

abundance of this isotope and interferences from Ar.  

 

Each measurement consists of twenty cycles, each cycle having 8.5 second integration. Data 

acquisition for in situ analyses is initiated approximately 15 seconds after the laser is fired. This 

delay accounts for transport of ablated material into the mass spectrometer and the time taken to 

establish a stable signal on the Faraday cups. Similarly, data acquisition for solution analyses 

begins once a stable signal is established for the aspirated sample. Baseline intensities are 

measured for 5 seconds at the beginning of each analysis by deflecting the ion beams. 

Background interference is evaluated by measuring signal intensities on sulfur masses whilst 

aspirating blank (2 % nitric acid) solutions periodically throughout the analytical session (i.e., 

on-peak zero). On-peak background is measured on the low mass shoulder (identical to sample 

measurements) to avoid tailing from O2 and negative background due to possible ion scattering 

on the sides of the Faraday Cup. Wash-out times of two minutes and four minutes are used 

following solution and laser ablation analysis, respectively (Table 2). Automatic rejection of 

outlying cycles (2σ outlier criterion) offered within the NEPTUNE software is not performed. 

All data acquired, including raw Faraday intensities, raw measured isotope ratios and 

corresponding standard deviations and standard errors for each measurement, are evaluated off-

line. 
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Absolute S isotope ratios of unknown samples are determined using standard-sample bracketing 

(Belshaw et al., 1998; Albarède and Beard, 2004). The true S isotope ratio is calculated by 

correction for instrumental mass bias by linear interpolation between the biases calculated from 

two neighboring standard analyses. Isotope compositions are presented in the conventional delta 

(δ) notation by reference to in-house matrix-matched standards (SSpex and SAlfa), i.e.; 

 

 δ34S = ⎟
⎟
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⎛
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Analogous relations are used for the determination of δ33S, substituting 33S for 34S in the 

equation above. The isotope compositions of in-house standards used to bracket unknown 

samples have been calibrated exactly against reference material IAEA-S-1. The S isotope 

compositions of samples are then normalized to the Vienna Cañon Diablo Troilite (V-CDT) 

scale assuming, by definition, δ34SV-CDT of IAEA-S-1 exactly equal to – 0.3 ‰ (Ding et al., 

2001). Further calibration and verification of the ‘accuracy’ of the S isotope compositions of in-

house standards was examined by determining the isotope compositions of other reference 

materials analyzed as unknowns. Within uncertainty, the isotope compositions of reference 

materials determined by this study are consistent with published consensus δ34S values (Table 3). 

For individual analyses, internal precision is reported at the 1σ error level. For replicate analyses, 

external reproducibility is reported at the 2σ error level.  

 

3. Experimental Results 

 

  



3.1. Isobaric interference and background correction 263 
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Isobaric interferences and blank contamination can contribute to measured signal intensities on 

sulfur isotope masses of interest and can bias measured isotope ratios. An assessment of these 

two artifacts is required in order to obtain the necessary precision and accuracy for S isotope 

measurements. Isobaric interferences include molecular ions (e.g., 16O-16O+, 32S-1H+ and 17O-

16O-1H+) and less abundant doubly-charged ions (e.g., 64Zn2+) and exist on all isotopes of interest 

(Table 2). For accurate determination of S isotope ratios, it is essential that these interferences 

either be removed completely or be resolved with appropriate mass resolution. For the 

NEPTUNE, sulfur isotope measurements can be performed setting the entrance slit to medium or 

high resolution (high resolution recommended) and detector slit to low resolution. In this 

configuration, sulfur is resolved as a flat plateau (peak shoulder) on the low mass side of 

interfering oxygen species and the detector is positioned on this interference-free shoulder for 

data collection (Figure 2). The mass resolution for this setup is defined by the resolving power of 

the mass spectrometer, m/Δm* (Weyer and Schwieters, 2003). It is important to note that the 

resolving power (m/Δm*) is distinct to standard mass resolution given by the 10 % valley 

definition, and is a factor of 3 – 4 higher than standard mass resolution (Weyer and Schwieters, 

2003). A resolving power m/Δm* ~ 5000 – 6000 is sufficient to separate major oxygen 

interferences, including contributions from oxygen-tailing and ion-scattering, from sulfur 

isotopes of interest.  

 

The resolving power of the NEPTUNE is not sufficient to fully separate sulfur from hydride 

interferences (m/Δm* > 12,000), and so hydride formation should be quantified. We calculate on 

average ~ 0.05 – 0.10 % production efficiency for sulfur hydride. For the low abundance isotope 

  



33S, contribution from 32S-1H is more than 10 % of the total signal on mass 33, resulting in 

significant bias of the measured isotope ratio and poor reproducibility of δ
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33S ratios of about 2 – 

3 ‰ (see section 3.2.). Hydride contribution from 33S-1H+ on mass 34 is negligible (< 0.02 %) 

and does not limit the overall precision for 34S/32S ratios obtainable by this technique, in 

particular because the effect of hydride formation is corrected by the standard-sample bracketing 

technique. The rate of hydride formation is calculated for each measurement using (33S + 

32SH)/32S vs. 34S/32S relationship to ensure that hydride formation is uniform between sample and 

standard analysis.  

 

Blank contributions can include sulfur due to laboratory contamination and from instrument 

memory. Previous high-precision S isotope ratio measurements by laser ablation lacked 

quantitative assessment of blanks (Mason et al., 2006). The procedural blank for our purification 

method was assessed during preparation and chemical purification of sulfur standards and 

samples. The blank is calculated to be ~ 0.05 % of total sulfur processed. Typically, sulfur 

intensities of the procedural blank are minor as compared to sulfur intensities of standards and 

samples (~ 30 mV for blank versus 15 – 20 V for standard, on mass 32). Further, sulfur 

contamination can result from transient memory effects during sulfur isotope measurement. 

These effects are manifest as small, but variable, spikes in the sulfur intensity during the 

aspiration of a blank solution after analysis of a sulfur-bearing analyte. Memory effects are not 

significant for solution-based analysis and are removed by applying a two minute wash-out 

period after solution analysis. However, they can be more important for laser ablation analysis 

because residual particles can be carried from the laser cell to the mass spectrometer for an 

extended period after ablation and isotope analysis have finished. Typically, a four minute wash-

  



out period after in situ analysis is sufficient and recommended to enable spikes arising from 

residual particles to be removed.  
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Total background corrections are necessary if trace, but measurable, sulfur contamination or 

unresolved interferences contribute to signal intensities and bias isotope compositions. Repeated 

analyses of in-house sulfur standards at a range of sulfur concentration and signal intensity 

indicate significant deviation of measured S isotope ratios from true ratios at low sulfur 

concentration (Figure 3). Correction for total background is performed by periodic aspiration and 

isotopic measurement of blank solutions throughout each analytical session. Absolute signal 

intensity of the background is ~ 30 – 50 mV (on 32S). Average background intensities are 

determined for each isotope (on-peak zero) and are directly subtracted from the signal intensity 

for each sulfur isotope mass as part of off-line evaluation. For routine sample analysis, the 

necessary correction for background contributions is typically small (≤ 0.4 ‰), but can be 

variable. However, these deviations are statistically significant and can produce perturbations of 

S isotope ratios greater than 1.0 ‰ at less than one volt signal intensity (on 32S). Approaches to 

minimize the magnitude of the background correction required to within limits of analytical 

precision are advantageous because the concentration and isotopic composition of the blank are 

inherently variable and difficult to characterize. Accordingly, the following procedures are 

recommended; (1) measure isotope ratios of standard and sample analytes at minimum signal 

intensities ~ 10 volts (signal-to-background ratios > 300) and, (2) determine isotope 

compositions of unknown samples with a standard analyzed at the same intensity (within ~ 20 

%). By closely matching signal intensities, the mass bias calculated for the standard accounting 

  



for effects of both instrumental fractionation and background can be directly applied to unknown 

samples.  
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3.2. Internal precision and instrument mass bias 

In this study, we choose to apply the standard-sample bracketing technique to correct for 

instrumental mass discrimination. A matrix-matched sulfur solution is used as the bracketing 

standard for both bulk and in situ sample analysis. The magnitude and stability of instrumental 

mass bias is calculated from the evolution of the isotopic standard throughout the analytical 

session. For sulfur, we calculate typical mass bias between 4.0 and 5.1 % per atomic mass unit. 

Mass bias is variable between analytical sessions, but is generally stable to around 0.1 % over the 

duration of a single session and to 0.01 – 0.02 % between consecutive bracketing standards. The 

stability of this mass bias determines the ultimate precision obtainable by the standard-sample 

bracketing technique. Varying instrumental mass bias (i.e., drift) will increase the errors 

associated with applying mass bias corrections to unknown samples and will compromise 

analytical precision. We have assessed instrumental drift and observe no statistically significant 

deviation of isotope ratios (> 0.02 %) during routine analysis of individual samples, for analysis 

times up to approximately four minutes. Long-term drift, occurring over the duration of multiple 

sample analyses, is easily corrected by stringent standard-sample bracketing of unknown samples 

with standards analyzed immediately before and after. Data that show clear and large mass bias 

drift (greater than ~ 0.5 ‰) during individual samples should be discarded. 

 

The overall precision of bulk S isotope analysis using standard-sample bracketing has been 

assessed from the long-term reproducibility of SSpex and SAlfa standard solutions measured over 

  



multiple, independent analytical sessions (Figure 4). For routine bulk analysis, we estimate an 

external precision of ± 0.21 ‰ (2σ) and ± 0.18 ‰ (2σ) for δ
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34SAlfa and δ34SSpex, respectively (20 

– 30 replicates). In contrast, the precision for δ33S values deteriorate by an order of magnitude 

relative to δ34S due to the large contribution and high variability of unresolved 32S-1H 

interference on 33S (Figure 4). The external precision of in situ S isotope analysis is more 

difficult to assess because real isotopic heterogeneity may contribute to variability of isotope 

compositions determined by repeat analyses of mineral samples. An estimate of external 

precision of in situ techniques was determined by replicate analysis of the isotopically 

homogenous anhydrite standard Sch-M-2 and calculated to be ± 0.45 ‰ (2σ; 12 replicates).  

 

3.3. Matrix effects 

Instrumental mass bias within ICP-MS results from so-called ‘space-charge’ and ‘ion-diffusion’ 

effects on the transmission of ionized particles (Tanner, 1992; Vanhaecke et al., 1993; Maréchal 

et al., 1999) and has been shown to be sensitive to matrix composition (Galy et al., 2003; 

Pietruszka et al., 2006). In order to evaluate the possibility of matrix effects from elements that 

are commonly found in sulfide and sulfate minerals, we performed doping experiments using 

Sspex standard solution mixed with various high-purity element solutions. For each experiment, 

we used synthetic solutions with a matrix corresponding to stoichiometry of various sulfide and 

sulfate minerals (e.g. anhydrite, pyrite, chalcopyrite, sphalerite, etc.). The S isotope ratios of 

doped Sspex solutions were determined and compared against the S isotope ratio of purified Sspex 

solutions (Figure 5). The results show, in most cases, that matrix effects from Ca, Fe, Ni, Mo, Sn 

are significant (up to 0.7 ‰) and yield poorly reproducible isotope determination. The data also 

indicate that the presence of matrix elements tend to increase the instrumental mass bias for S.  
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In order to evaluate the efficiency of the chemical purification procedure to remove matrix 

elements, we separated and purified an aliquot of the doped solutions. The aliquots were 

processed through cation-exchange (AG50-X8) resin as described previously and re-analyzed as 

unknown samples. The results demonstrate that chemical purification effectively removes the 

matrix and enables consistent and reproducible isotope measurements free of matrix effects 

(Figure 5). Further, the data indicate that the chemical purification procedures do not introduce 

any artificial isotope fractionation (e.g., from loss of S) that would compromise the accuracy of 

this method. The only exception is Mo, which is not separated from S through the AG50-X8 

resin. Thus, we conclude that this method is adequate for measuring most common sulfide and 

sulfate minerals, except Molybdenite.  

 

3.4. Laser ablation parameters 

In situ analysis using laser ablation coupled to ICP-MS has been successfully developed and 

applied for both elemental and isotope ratio measurements of geologic materials (Jackson et al., 

1992; Fryer et al., 1995; Horn et al., 2000; Russo et al., 2001; Košler et al., 2005; Mason et al., 

2006; Woodhead et al., 2007). To date, most applications have used nanosecond lasers for 

sample ablation. These are recognized as introducing laser-induced fractionation, which are 

superimposed on mass fractionation of the ICP-MS. Potential sources of elemental and isotopic 

fractionation appear to be similar and include, (1) differential evaporation and/or condensation of 

particles at the site of ablation, (2) variation of particle transport toward the ICP and, (3) 

incomplete vaporization and ionization of particles in the ICP (Outridge et al., 1997; Eggins et 

al., 1998; Figg et al., 1998; Horn et al., 2000; Jackson and Günther, 2003; Horn and von 

  



Blanckenburg, 2007). In addition, differences between matrices of the ablated sample and 

standard aerosols can introduce further mass discrimination and inaccurate mass fractionation 

correction of ablated samples. In order to obtain the most precise and consistent isotope 

measurements, it is essential to recognize and minimize mass discrimination introduced by the 

laser to within the analytical uncertainties achievable by this method. Optimization of laser 

protocols to minimize laser-induced fractionation has been investigated, and appropriate laser 

parameters for the determination of S isotopes are presented below. 
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3.4.1. Line scan versus spot ablation 

Experiments were carried out to examine the effect of single spot (‘crater’) versus line scan 

(‘raster’) protocols on isotope fractionation and the precision obtainable by in situ analysis for 

the anhydrite Sch-M-2 (Figure 6). Laser parameters, including laser optics and pulse energies 

and frequencies, were kept the same for these comparisons. Line scan ablation results in higher 

and non-decaying signal intensities, and is reflected in the long-term stability and greater 

precision of S isotope ratios obtained by this protocol (Figure 6a). For spot mode analysis, signal 

intensity deteriorates after approximately 90 seconds of ablation. Accordingly, the precision and 

reproducibility of S isotope compositions using spot analysis diminishes significantly after 

approximately the same length of time (Figure 6b). Degradation of signal intensity and analytical 

precision is likely attributable to changes in crater geometry and increasing depth/radius aspect 

ratio during ablation (Eggins et al., 1998; Horn et al., 2000; Russo et al., 2001). The causes of 

signal reduction and isotope fractionation related to changes in crater geometry are not precisely 

known, but may reflect decreasing laser irradiance and increasing thermal conductivity that 

affect the efficiency of material volatilization and/or condensation, and particle transport at the 

  



site of ablation (Eggins et al., 1998; Russo et al., 2001). In raster mode these effects can be 

largely avoided because the trench depth and geometry remains relatively uniform during 

ablation, and so differences in particle ablation and particle transport can be minimized. We note 

that, within analytical uncertainty, Sch-M-2 is isotopically homogenous and does not explain the 

large variability in isotope ratios measured during spot mode analysis (i.e., no heterogeneity is 

sampled during depth profiling at a single spot). 
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Accordingly, line scan analysis is recommended for all in situ isotope measurements where 

sufficient sample sizes and longer ablation times are available. The internal precision obtainable 

by line scan mode is typically ± 0.25 ‰ (1σ). By comparison, the internal precision for spot 

mode analysis is typically ± 0.5 – 0.6 ‰ (1σ) for samples ablated for periods of time up to 

approximately two minutes. Spot mode analysis should be useful for rapid and approximate 

determination of S isotopes when high precision (≤ 1 ‰) is not required or sample size is 

severely limited. 

 

3.4.2. Carrier gas composition and laser beam diameter 

The effect of varying carrier gas compositions to transport ablated material to the ICP has been 

investigated extensively previously (Eggins et al., 1998; Günther and Heinrich, 1999b; Jackson 

and Günther, 2003). Experimental data have indicated that the use of helium, as compared to 

argon, for the carrier gas significantly increases signal intensities (two- to four-fold increase) and 

reduces background (Eggins et al., 1998; Günther and Heinrich, 1999a). This observation has 

been interpreted to reflect, (1) increased evaporation and decreased condensation of ablated 

particles at the site of ablation and, (2) reduced sputtering of larger particles and increased 

  



ionization efficiency of material in the ICP (Eggins et al., 1998; Günther and Heinrich, 1999b). 

Incomplete vaporization and ionization of large particles in the ICP is a potential cause of 

isotope fractionation (Jackson and Günther, 2003). Similar effects have been demonstrated for 

elemental fractionation (Horn et al., 2000). The use of He as a carrier gas has been shown to 

significantly reduce isotope fractionation (Jackson and Günther, 2003). Accordingly for our 

study, helium is used as the carrier gas through the laser cell in all instances. 
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In addition, it has been demonstrated that particle size distribution is dependent on the diameter 

of the incident beam (Figg et al., 1998; Jeong et al., 1999). Beam optic protocols to minimize the 

formation of large particles should be adopted, in order to reduce potential isotope fractionation 

associated with large particles (Jackson and Günther, 2003). The effect of varying beam diameter 

on particle size distributions has not been examined explicitly because particle filtering apparatus 

were not available for this study, but have been examined elsewhere (Guillong and Günther, 

2002; Jackson and Günther, 2003). Large beam diameters and apertured beam optics will 

distribute incident laser energy more evenly over the sample surface and may promote the 

ablation of smaller, more uniformly-sized particles, which will be more efficiently ionized in the 

ICP. Material ablated with large beam diameters exhibit significantly less mass discrimination 

during isotope measurement (Horn et al., 2000), likely resulting from more quantitative and 

equal ionization of all elements and/or isotopes. Similarly for our method, a large beam diameter 

~ 60 µm and defocused (apertured) beam optics are recommended for in situ S isotope 

measurements because these should further minimize laser-induced isotope fractionation. 

 

  



To validate these laser protocols, replicate sampling and analysis of the anhydrite mineral 

standard Sch-M-2 was carried out by laser ablation MC-ICP-MS. Measured isotope 

compositions were compared against data for the same standard analyzed using solution 

techniques (Figure 7). The isotope composition of Sch-M-2 determined by in situ analysis is 
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34SV-CDT = 2.22 ± 0.45 ‰ (2σ, 12 replicates). This is identical, within analytical uncertainty, to 

the isotope composition determined by bulk analysis; δ34SV-CDT = 2.12 ± 0.26 ‰ (2σ, 8 

replicates). For both mineral and solution analyses, Sch-M-2 was bracketed by a matrix-matched 

in-house solution standard (see section 3.4.3 for further details). These data indicate that the laser 

parameters described previously introduce laser isotope fractionations that are within the 

analytical uncertainties (~ 0.4 ‰) of our in situ S isotope method.  

 

3.4.3. Matrix-matching protocols 

The effects of matrix on isotope mass discrimination during in situ S isotope determination are 

similar to those for bulk analysis. Because it is not possible to remove the complex matrix of 

natural mineral samples for in situ analysis, it is necessary to assess and correct this matrix 

fractionation using appropriately matrix-matched standards. Isotopically homogeneous, 

calibrated and matrix-matched solid standards are not available for many natural mineral 

samples. Therefore, it may be necessary to use matrix-matched solution standards to bracket 

unknown mineral samples for in situ analysis. The matrix of solution standards can be readily 

doped in order to match the wide range of matrix occurring in geologic samples. We have 

investigated the validity of matrix-matching between solution standards and mineral samples. 

Replicate analyses of the anhydrite standard Sch-M-2 using conventional solution methods and 

matrix-matched (Ca-doped) bracketing standards yields an isotope composition δ34SV-CDT = 2.12 

  



± 0.26 ‰. As presented in Figure 7, this is identical, within analytical uncertainty, to the isotope 

composition determined by in situ analysis using identical matrix-matched solution standards; 
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34SV-CDT = 2.22 ± 0.45 ‰. These data are concordant with the S isotope composition obtained 

previously for Sch-M-2 after chemical purification and analysis as a matrix-free sulfate solution 

(δ34SV-CDT = 2.24 ± 0.27 ‰; Table 3). In contrast, significant and consistent deviations of 

measured isotope ratios (up to 0.7 ‰) from ‘true’ isotope ratios are obtained when the Sch-M-2 

standard is bracketed by non-matrix-matched standards. These data indicate that, although 

instrumental mass bias introduced by the complex matrix of mineral samples cannot be removed 

entirely, it can be appropriately corrected by bracketing with a standard of identical matrix. This 

is important for obtaining the necessary ‘accuracy’ of S isotope compositions using this method. 

 

4. Application of bulk S-isotope analysis of sulfide and sulfate minerals 

 

4.1. S isotope analysis of reference materials 

Because no internationally certified standard reference material is available for S-isotope 

composition of pure sulfur (i.e. sulfate) solution, it is necessary to use in-house standard 

solutions to bracket unknown sample solutions across multiple analytical sessions. The δ34S 

isotope composition of our in-house standards, SAlfa and SSpex, have been calibrated against 

reference material IAEA-S-1 and have been normalized to the V-CDT scale, assuming by 

definition an isotope composition of IAEA-S-1 equal to δ34SV-CDT = – 0.3 ‰ (Coplen and 

Krouse, 1998; Ding et al., 2001). Accordingly, the isotope compositions for our in-house 

standards are δ34SV-CDT (Alfa) = + 1.91 ± 0.21 ‰ (2σ) and δ34SV-CDT (Spex) = – 2.99 ± 0.18 ‰ 

(2σ). The analysis of S isotope compositions of other RMs (IAEA-S-2, S-4 and NBS-123; Table 

  



3) using our in-house analytes as bracketing standards are concordant with previously reported 

values within analytical uncertainty (Taylor et al., 2000; Ding et al., 2001; Qi and Coplen, 2003). 

These data confirm the consistency of our S isotope measurements and the validity of standard-

sample bracketing. Reproducibility is typically 0.2 ‰ and is consistent across a wide range of 

sample material and S-isotope compositions. For example, determination of the S-isotope 

composition of purified seawater sulfate from Woods Hole, MA (in-house seawater standard) 

yields a value of δ
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34SV-CDT = 21.22 ± 0.19 ‰ (2σ), which is undistinguishable within error from 

the consensus value for modern seawater (Rees et al., 1978). Analysis of S-isotope compositions 

of both sulfate- and sulfide-bearing reference minerals yielded similar results.The S-isotope 

compositions determined for the purified in-house standards Sch-M-2 (evaporate anhydrite) and 

GAV-18 (hydrothermal pyrite) are δ34SV-CDT = 2.27 ± 0.12 ‰ and 9.66 ± 0.2 ‰, respectively. 

These isotopic values are within analytical error of S-isotope compositions determined 

previously using conventional techniques (Table 3). 

 

4.1.S isotope analysis of hydrothermal and sedimentary sulfides 

We have analyzed a selection of natural sulfides from sedimentary and hydrothermal 

environments (Table 4). Sulfur isotope studies provide valuable information for determining 

sulfur sources and precipitation mechanisms in submarine hydrothermal deposits. Several 

mechanisms have been proposed to explain variations in the δ34S values of sulfides in seafloor 

hydrothermal systems (Janecky and Shanks, 1988; Herzig et al., 1998; Shanks, 2001) and 

indicate that sulfur has three major sources: (1) sulfur from the leaching of igneous rocks, (2) 

sulfur from the reduction of a small amount of admixed seawater-derived sulfate, and (3) sulfur 

produced by disproportionation of magmatic SO2 in back-arc hydrothermal systems. Sulfur 

  



isotope results from modern hydrothermal pyrite and chalcopyrite (Table 4) are consistent with 

previously reported studies (Herzig et al., 1998; Bach et al., 2003; Rouxel et al., 2004). We 

observe an overall range of δ
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34S values between – 3.4 to + 6.3 ‰ suggesting that this technique 

can be used to infer S geochemical cycling in seafloor hydrothermal systems, such as seawater 

sulfate reduction (increasing S isotope composition) and magmatic S input (producing negative 

S-isotope composition). In some cases, the difference from published values is significant (up to 

0.6 ‰) but may result from sample heterogeneity not identified by bulk analysis.  

 

We have also analyzed a selection of natural sulfides from sedimentary environments (Table 4). 

Pyrite formation in modern organic-rich marine sediments is mediated by sulfate-reducing 

bacteria and proceeds through the dissolution and reduction of lithogenic Fe-oxides and silicates 

to Fe(II), either below the sediment-water interface during diagenesis or in the stratified euxinic 

bottom waters syngenetically (Canfield, 1989; Anderson and Raiswell, 2004). Hence, S isotope 

composition of sedimentary pyrite can provide valuable information to distinguish between 

diagenetic and syngenetic pyrite formation as well as sulfur geochemical cycling in ancient 

oceans (Zaback et al., 1993; Calvert et al., 1996; Lyons, 1997; Werne et al., 2003; Neretin et al., 

2004). Sulfur isotope compositions of pyrite from black shales are also reported in Table 4 and 

display an overall range of 55 ‰.  Small fractionation of S isotopes in late Archean sedimentary 

sulfides (Jeerinah Formation; Table 4) is consistent with previous studies suggesting sulfate 

reduction at low sulfate concentrations (Canfield et al., 2000) due to low levels of atmospheric 

oxygen (Farquhar et al., 2000; Ono et al., 2003). The significant increase in the S isotope 

fractionation in sedimentary pyrite at 2.32 Ga has been interpreted as reflecting an increase of 

seawater sulfate concentrations in the aftermath of the rise of atmospheric oxygen (Cameron, 

  



1982; Canfield, 1998; Bekker et al., 2004; Kah et al., 2004). Because this technique is 

compatible with other non-traditional stable isotope techniques, such as those used for Fe-isotope 

determination in sedimentary sulfides (Rouxel et al., 2005), it is possible to apply coupled S and 

Fe stable isotope approaches for the study of ancient S- and Fe- biogeochemical cycling. 
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5.  Application of in-situ S isotope analysis of sulfide and sulfate minerals  

 

5.1. Assessment of mass fractionation and external reproducibility 

Our instrumental setup for in situ analysis requires no modification to the physical configuration 

or operating parameters used for bulk solution analysis. Bulk and in situ measurements can be 

performed interchangeably within a single analytical session. We use the standard-sample 

bracketing technique for the isotope determination of unknown mineral samples, identical to 

bulk S isotope measurements. We recognize and caution that the mechanics of particle ablation, 

aerosol transport and ionization in the ICP are significantly more complex than for solution 

aspiration. This may result in isotope mass fractionation and accordingly poor analytical 

precision or inaccurate data. We have presented laser protocols that minimize mass bias 

introduced by the laser, and which are concordant with results of previous studies (Outridge et 

al., 1997; Eggins et al., 1998; Figg et al., 1998; Günther and Heinrich, 1999b; Jeong et al., 1999; 

Horn et al., 2000; Russo et al., 2001; Guillong and Günther, 2002; Jackson and Günther, 2003). 

Further, differences in the behavior of aerosols for ablated particles as compared to aspirated 

solutions will contribute to the overall uncertainty of in situ isotope measurement using standard-

sample bracketing. Despite these potential difficulties, replicate analysis of the mineral standards 

indicates relatively precise and consistent isotope ratio determinations as compared to isotope 

  



compositions determined by independent bulk analyses (Table 5). The long-term reproducibility 

of our in situ technique is approximately ± 0.45 ‰ (2σ). Further, the isotope composition of Sch-

M-2 determined by bulk (δ
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34SV-CDT = 2.12 ± 0.26 ‰) and in situ (δ34SV-CDT = 2.22 ± 0.45 ‰) 

techniques are identical within these analytical uncertainties, indicating no consistent bias of 

offset from mass bias corrections using standard-sample bracketing with appropriately matrix-

matched standards. This should enable S isotope determinations for a wide range of natural 

sulfur-bearing samples for which well-characterized, isotopically-homogeneous and 

appropriately matrix-matched solid standards do not exist. 

 

5.2. Future applications of in situ S-isotope analysis of sulfide and sulfate minerals 

Determination of S isotopes using laser-ablation MC-ICP-MS may provide additional 

information about geochemical and biological processes that might not otherwise be obtained 

using bulk techniques. A primary application of our in situ analytical routine is to examine S 

isotope variability in sulfur-bearing hydrothermal and sedimentary materials relevant to the study 

of sulfide-sulfate deposition in modern and ancient marine environments. In situ analysis is 

particularly important for systems where significant variations in S isotope compositions may be 

recorded on small (µm to cm) spatial scales (e.g., within hydrothermal sulfide-sulfate veins or 

sulfide chimney deposits). In addition, in situ analyses may be necessary for samples for which it 

is difficult to chemically or physically eliminate matrix from the analyte (e.g., co-existing 

sulfides or sulfide-sulfate minerals). We have applied our in situ method to the determination of 

S isotopes in a suite of hydrothermal and sedimentary sulfides and sulfates and can compare our 

data versus isotope compositions determined using conventional techniques. Overall, the data are 

in excellent agreement for the range of sulfide and sulfate minerals examined (Table 5). For 

  



samples that appear to be isotopically homogeneous based on replicate in situ analyses, our data 

are the same, within analytical error, to S isotope compositions determined by independent 

methods. We identify no consistent or significant deviation between S isotope ratios determined 

by laser ablation MC-ICP-MS and other techniques, which would otherwise indicate some 

unaccounted mass fractionation by our method. For several sulfide and sulfate, we identify 

significant isotopic heterogeneity within single samples on spatial scales of mm. These variations 

are not likely due to matrix artifacts, because in all cases unknown samples are calibrated against 

matrix-matched standards. Rather, the data likely demonstrate real geochemical heterogeneity 

recorded by the sample. It is beyond the scope of this paper to discuss the origin of the S isotope 

variations observed, however our data demonstrate that in situ analytical approaches to S isotope 

determination can provide information about geochemical processes that might otherwise be 

overlooked by bulk, conventional techniques. 
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6. Conclusions 

 

We have developed a technique for the rapid, precise and consistent determination of S isotopes 

(δ34S) by bulk and in situ MC-ICP-MS applicable for a range of sulfur-bearing materials. Major 

isobaric interferences from molecular 16,17,18O2
+ on sulfur masses of interest are removed by 

applying sufficient mass resolution and determining sulfur intensities on interference free 

plateaus. Hydride (32S-1H, 33S-1H) and argon (36Ar) interferences are not fully resolved with high 

mass resolution and limit the application of MC-ICP-MS techniques for accurate multiple S 

isotope (δ33S, δ 36S) determination. We have examined potential contributions to background 

sulfur signal, including blank contamination and unresolved spectral interferences (e.g., O2-

  



tailing due to mass drift). Background intensities on sulfur are typically small (30 – 50 mV on 629 
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32S), but may be variable over the course of an analytical session. Average background 

intensities are determined for each isotope (on-peak zero) and are directly subtracted from the 

signal intensity for each sulfur isotope as part of off-line evaluation. Approaches to minimize the 

magnitude of the background correction required to within limits of analytical precision are 

advantageous because the concentration and isotopic composition of the blank are inherently 

variable and difficult to characterize. Accordingly, the following procedures are recommended; 

(1) measure isotope ratios of standard and sample analytes at minimum signal intensities ~ 10 

volts and, (2) determine isotope compositions of unknown samples with a standard analyzed at 

the same intensity (within ~ 20 %). By closely matching signal intensities, the mass bias 

accounting for effects of instrumental fractionation and background as calculated for the 

standard, can be appropriately applied to unknown samples.  

 

Instrumental mass bias is corrected by applying the standard-sample bracketing technique, 

whereby the mass bias calculated for two standard runs immediately before and after are applied 

by linear interpolation to the unknown sample. We have presented a rigorous examination of 

matrix effects for S isotope determination by MC-ICP-MS and show that matrix artifacts can 

produce variable and significant mass bias (up to 0.7 ‰). It is essential that S isotope ratios of 

samples be determined using appropriately matrix-matched standards. For bulk S isotope 

analysis, we have described a chemical purification method that is applicable for a wide range of 

sulfide and sulfate materials whereby the matrix is removed. For in situ analysis, where the 

matrix cannot be removed prior to analysis, it is essential that appropriately matrix-matched 

standards be used to correct instrumental mass bias. An important development of our standard-

  



sample bracketing methods is the ability to determine accurate and precise S isotope 

compositions in aqueous and mineral samples with a wide range of matrix, using matrix-

matched solution standards in both cases. This has particular application for the in situ analysis 

of many sulfur-bearing minerals for which certified solid standards with correct matrix do not 

exist. We have examined sources of isotope fractionation introduced by the laser process. In 

order to apply the standard-sample bracketing method appropriately using solution standards, it 

is necessary to minimize laser-induced mass bias to within acceptance limits of uncertainty for 

the method. Recommended laser protocols are discussed that should enable precise and 

consistent S isotope ratio measurement by laser ablation MC-ICP-MS.  
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We have validated the robustness of our analytical method by multiple determinations of 

reference materials. S isotope ratios for reference materials determined by this study and by 

independent techniques show excellent agreement demonstrating the ‘accuracy’ of our method. 

For solution analysis, the long-term reproducibility of S isotope measurements is typically ± 0.20 

‰ (2σ). For in situ analyis, the external precision calculated by replicate measurement of 

homogeneous mineral standards is ± 0.45 ‰ (2σ). Importantly, there is good agreement between 

S isotope ratios for the same standards determined by bulk and in situ analysis (within 0.2 ‰), 

indicating that standard-sample bracketing can appropriately correct for instrumental mass bias 

and that laser-induced mass bias is smaller than analytical uncertainties. In addition, we have 

performed preliminary S isotope determination for a range of natural sulfide and sulfate minerals 

by laser ablation MC-ICP-MS. Again, the results of this study demonstrate excellent agreement 

with published data. The analytical technique presented here should enable precise and accurate 

  



S isotope measurement for a wide range of sulfur-bearing materials – in particular for geologic 

samples with complex matrix for which high-precision, high-resolution in situ analysis is critical.  
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Figure Captions 

 

Figure 1. 

Schematic diagram of the introduction system to the NEPTUNE MC-ICP-MS. Standard and 

sample solutions are taken up in Ar gas flow and introduced as a ‘wet’ aerosol (in 2% HNO3) 

into the ICP torch via a cyclonic spray dual chamber. During in situ analysis, ablated material is 

carried via He gas flow into the cyclonic spray dual chamber where it is mixed with ultra-pure 

2% HNO3 to yield a wet aerosol. 

 

Figure 2. 

Peak shapes for S-isotopes at masses 32 (diamond), 33 (square) and 34 (triangle) for aspiration 

of a 20 ppm S solution. Beams are collected simultaneously on three individual Faraday Cups in 

‘high-resolution’ mode. Significant interferences from O2
+ occur on all sulfur masses (light-gray 

bar) and must be removed using sufficient mass resolution to enable detection of S-isotopes on 

the interference-free plateau at lower mass (dark-gray bar). 

 

Figure 3. 

Variability of measured 34S/32S isotope ratio as a function of 32S signal intensity for SAlfa standard 

solution. For signal intensities below 1 volt (equivalent to ~ 2 ppm S) mass bias toward heavy 

34S/32S ratios is significant resulting from blank artifacts (highlighted gray area) that require 

appropriate correction. 

 

Figure 4. 

  



Long-term reproducibility of S-isotope for in-house solution standards SAlfa and SSpex calibrated 

against certified standards over multiple, independent analytical sessions. Data are shown 

relative to the in-house SSpex scale. For δ34S values, the reproducibility is within ± 0.2 ‰ for both 

solutions. For δ33S, the reproducibility is poor because of variable and significant interference on 

mass 33 from formation of 32S-1H hydride. 

 

Figure 5. 

Assessment of matrix effects on measured S-isotope ratios for a range of elements with 

stoichiometry appropriate to various sulfide and sulfate minerals (shown with open circles). 

Element-doped S solutions are measured and isotopic compositions are expressed as permil 

deviation on the V-CDT scale from the composition determined for the pure S (i.e., sulfate) 

standard (Δ34S = δ34S(matrix solution) – δ 34S(pure S solution)). The element-doped solutions were purified 

and the isotope composition re-determined (filled diamonds). Following purification, the 

deviation between the pure S standard and purified solutions is within analytical uncertainty. 

External precision calculated at ± 0.2 ‰ is shown by the gray bar. 

 

Figure 6. 

Signal intensities and measured isotope ratios for anhydrite standard Sch-M-2 using (a) line scan 

(‘raster’) ablation and (b) single spot ablation. ICP-MS operating parameters were identical for 

acquisition of both data. Signal intensities for line scan ablation are significantly higher as 

compared to spot ablation and remain high throughout the ablation period. Accordingly, 34S/32S 

isotope ratios determined for line scan analysis are more precise and consistent with isotope 

ratios for Sch-M-2 determined using conventional bulk techniques (shown by horizontal gray 

  



bar; δ34S = 2.27 ± 0.24 ‰, 2σ). The oscillating fluctuation of signal intensity for line scan mode 

arises because the mass of material ablated material varies as extra laser pulses are applied to a 

single area during changes of the direction of sample movement in line scan analysis. This 

artifact does not compromise the precision obtainable by in situ analysis at these high signal 

intensities. 

 

Figure 7. 

Comparison of S isotope compositions determined for the in-house anhydrite standard Sch-M-2 

using bulk analysis (gray diamonds) and in situ analysis (gray circles). In both cases, the isotope 

value composition of anhydrite was calibrated against a matrix-matched (Ca-doped) sulfur 

standard, SAlfa. The isotopic compositions determined for Sch-M-2 are identical within analytical 

uncertainties for both methods using matrix-matching procedures. Significant mass bias offset is 

observed for Sch-M-2 when calibrated against a non-matrix-matched SAlfa standard, resulting in 

erroneous S isotope determinations (white diamonds). Error bars for single analyses are 1σ 

(internal precision). Mean isotope compositions calculated from replicate analyses are reported at 

2σ (external precision). 

  



 

Table 1 Typical operating parameters for NEPTUNE MC-ICPMS and NewWave UP213 laser. 

Mass Spectrometer Setup  
MC-ICP-MS ThermoElectron NEPTUNE 
RF power ~ 1150 W 
Pt-guard electrode On, grounded 
Gas flows  
Cooling gas ~ 15 L/min, Ar 
Auxiliary gas ~ 0.8 L/min, Ar 
Sample gas ~ 0.8 - 0.9 L/min, Ar 
Laser "carrier" gas ~ 0.35 - 0.4 L/min, He 
Interface cones X-cones (Ni) 
Analyzer pressure ~ 10-9 torr 
Nebulizer PFA-50, Elemental Scientific, Inc. 
Sample uptake rate 50 µL/min 
Spray Chamber SSI cyclonic spray dual chamber, Elemental Scientific, Inc. 
  
Data Acquisition Parameters  
Acquisition mode Static, analogue detectors 
Detection system Faraday cups 
Cup configuration 32S (L3), 33S (C), 34S (H3) 
Resolution mode High (entrance slit); Low (detector slit) 
Signal analysis protocol 8.5 sec integration per cycle, 20 cycles. 
Wash-out time 2 min (solution); 4 min (laser) 
  
Laser Setup  
Laser New Wave UP213, (quad Nd:YAG 213 nm laser) 
Carrier gas Helium 
Beam optics Apertured Mode 
Spot diameter 60 µm 
Raster protocols Pattern area 180 x 80 µm, Line spacing 15 µm 
Scan speed 5 µm/s 
Ablation duration (analysis time) 260 s 
Pulse rate 10 Hz 
Laser intensity 50 - 70 % (~ 0.4 mJ) 
Energy density ~ 9 - 10 J/cm2

Pre-ablation same raster and spot size, scan speed 30 µm/s, intensity 40 % 
    

 

  



 

Table 2 Isobaric (spectral) interferences on sulfur isotope masses 

Isotope Abundance (%) Interference Abundance m/Δm 
     

32S 94.93 16O-16O 99.52 1801 

  64Zn2+ 48.89 -4562 

  15N-16O-1H 0.37 1040 
     

33S 0.76 17O-16O 0.08 1461 

  16O-16O-1H 99.51 1260 

  32S-1H 95.01 3907 

  66Zn2+ 27.81 -3905 
     

34S 4.29 18O-16O 0.4 1297 

  17O-16O-1H 0.76 1000 

  33S-1H 0.75 2977 

  68Zn2+ 18.56 -6238 
     

36S 0.02 36Ar 0.34 77083 

  35Cl-1H 75.76 3747 
          

 

  



 
Table 3 Reference materials and standards determined by this study 

Name Sample Type # of 
replicates 

δ34S 
Spex 2σ$ δ34S 

VCDT 2σξ δ34S VCDT * 

Reference Materials       

IAEA-S-1 Synthetic 
Ag2S 13 2.69 0.21 -0.30 0.28 -0.30 (a,b) 

IAEA-S-2 Synthetic 
Ag2S 11 25.43 0.39 22.44 0.43 22.67 ± 0.26 (c) 

IAEA-S-4 Elemental S 10 19.54 0.22 16.55 0.29 16.9 ± 0.2 (e) 

NBS-123 Natural ZnS 11 20.76 0.19 17.77 0.26 17.44 ± 0.2 (c,d) 

In-house Standards       

Alfa Specpure 
SO4

2- solution 20 4.90 0.24 1.91 0.30 n.d. 

Sch-M-2 
Permian 

Anhydrite, 
CaSO4

8 5.23 0.20 2.24 0.27 2.49 ± 0.2 

SW-Woods 
Hole 

Modern 
Seawater,   

Woods Hole 
4 24.18 0.19 21.19 0.27 20.99 (f) 

FeIII-sulfate Synthetic 
Fe2SO4.3H2O 6 11.33 0.14 8.34 0.23 n.d. 

GAV-18 Hydrothermal 
pyrite, FeS2

8 12.61 0.19 9.62 0.27 9.70 

Ward's Py Hydrothermal 
pyrite, FeS2

7 5.56 0.28 2.57 0.33 n.d. 

Ward's Po 
Hydrothermal 

pyrrhotite, 
FeS 

3 3.67 0.17 0.68 0.25 n.d. 

                
$ External precision (two standard deviations) calculated from replicate analyses 
ξ External precision calculated (two standard deviations) using error propagation of uncertainties of 
sample and bracketing standard. i.e., 2σ = √((2σ of sample)2 + (2σ of Spex standard)2) 

* published data, errors given at 2σ uncertainty: (a) Coplen and Krouse, 1998; (b) Ding et al., 2001;         
(c) Taylor et al., 2000; (d) Hut, 1987; (e) Qi and Coplen, 2003; (f) Rees et al., 1978 

 

  



 
Table 4 Bulk analysis of representative natural sulfides from hydrothermal and sedimentary 
environments 

Name Sample Type δ34S 
Spex 1σ$ δ34S 

VCDT 1σ$ δ34S VCDT * 

Modern Hydrothermal Sulfides      
MS-18-05 cpy chalcopyrite 8.32 0.11 5.33 0.21 5.0 (a) 
MS-21-03 cpy chalcopyrite 9.32 0.13 6.33 0.22 5.6 (a) 
NL-16-02 cpy chalcopyrite -0.36 0.11 -3.35 0.21 -3.4 (b) 
83-504B-80R1,62 pyrite 6.57 0.27 3.58 0.32 3.5 (c) 
83-504B-84R2,34 pyrite 6.75 0.27 3.76 0.32 4.0 (c) 
Kentucky Black Shales, Clay City (Devonian)     
Clay City. 510-519 #2 pyrite -16.81 0.49 -19.80 0.52 (d) 
ClayCity, 193-200 Leach pyrite -18.53 0.09 -21.52 0.20  
ClayCity, 232-238 Leach) pyrite -21.18 0.08 -24.17 0.20  
Black Shales, Illinois Basin (Devonian)      
SH-Dev-1 #1 pyrite 26.17 0.19 23.18 0.26 (d) 
SH-Dev-2 #1 pyrite -0.68 0.20 -3.67 0.27  
SH-Dev-3 #1 pyrite -7.99 0.14 -10.98 0.23  
SH-Dev-3 #2 pyrite -8.28 0.16 -11.27 0.24  
SH-Dev-3 #3 pyrite -7.63 0.23 -10.62 0.30  
2.32 Ga Rooihoogte and Timeball Hill Formations, Transvaal Basin, South Africa 
EBA-2/55 pyrite -25.17 0.07 -28.16 0.19 -29.1; -29.6 (e) 
EBA-2/59 pyrite -23.96 0.08 -26.95 0.20 -25.6; -28.8 (e) 
EBA-2/60 pyrite -28.97 0.00 -31.96 0.18 -28.9; -30.0 (e) 
EBA-2/67 pyrite -25.67 0.27 -28.66 0.32 -23.9; -29.9 (e) 
2.63 Ga Royal Hill Member of the Jeerinah Formation, Hamersley Basin, Western Australia 
FVG-1, 722.6 pyrite 6.10 0.10 3.11 0.21 -0.4 to 6.3 (f) 
FVG-1, 752.8 pyrite 5.85 0.11 2.86 0.21  
FVG-1, 761.8 pyrite 7.92 0.00 4.93 0.18  
FVG-1, 787.4 pyrite 5.53 0.04 2.54 0.18  
FVG-1, 849.6 pyrite 1.07 0.04 -1.92 0.18  
       
$ Internal precision (one standard deviation) for individual measurement. 

* Published data (a) Rouxel et al., 2004; (b) Herzig et al., 1998; (c) Bach et al., 2003; (d) A. Bekker, 
pers. comm. (e) Bekker et al., 2004; (f) Ono et al., 2003 

 

  



 
Table 5 In situ sulfur isotope analysis of natural sulfides and sulfates from hydrothermal 
and sedimentary environments 

Name Sample Type δ34S Spex δ34S VCDTξ δ34S VCDT$

Hydrothermal Sulfides     
ALV-4053-M1 #A1 marcasite   2.0 ± 0.2 (a) 

raster #1  5.21 2.21  
raster #2  5.31 2.31  
raster #3  5.14 2.14  

GAV-18 pyrite   9.7 ± 0.2 (b) 
raster #1  12.83 9.84  
raster #2  12.93 9.94  
raster #3  13.38 10.39  

FL-19-9 pyrite   0 ± 0.2 (c) 
raster #1  2.77 -0.22  
raster #2  3.35 0.36  
raster #3  3.54 0.55  
raster #4  3.51 0.52  

2.32 Ga Rooihoogte and Timeball Hill formations, Transvaal Basin, South Africa 
EBA-2/30 pyrite   -25.6; -26.2 (d) 

raster #1  -26.21 -29.21  
raster #2  -25.83 -28.83  
raster #3  -25.49 -28.49  
raster #4  -25.62 -28.62  
raster #5  -24.85 -27.85  
raster #6  -25.40 -28.40  
raster #7  -24.95 -27.95  
raster #8  -19.87 -22.87  
raster #9  -19.47 -22.47  

raster #10  -20.46 -23.46  
raster #11  -21.83 -24.83  

Hydrothermal Sulfates     
193-1188A-7R-1 anhydrite   21.6 (e) 

raster #1   21.22  
raster #2   21.22  
raster #3   21.13  
raster #4   21.07  

193-1188F-26Z-1 anhydrite   18.3 (e) 
raster #1   16.61  
raster #2   17.43  
raster #3   18.55  
raster #4   18.00  
raster #5   19.01  
raster #6   18.65  

     
ξ Normalized to V-CDT scale using δ34S of in-house Spex vs. V-CDT = - 2.99 ‰ 

$ Determined using conventional, bulk analysis; (a) Rouxel et al., 2007; (b) Rouxel, 
unpubl., this study; (c) Rouxel et al., 2004; (d) Bekker et al., 2004; (e) Bach et al., 2005 
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