22 research outputs found

    Understanding chronic nematode infections: evolutionary considerations, current hypotheses and the way forward

    Get PDF

    Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum.

    Get PDF
    To describe the clinical and genetic spectrum of RP1-associated retinal dystrophies. In this multicenter case series, we included 22 patients with RP1-associated retinal dystrophies from 19 families from The Netherlands and Japan. Data on clinical characteristics, visual acuity, visual field, ERG, and retinal imaging were extracted from medical records over a mean follow-up of 8.1 years. Eleven patients were diagnosed with autosomal recessive macular dystrophy (arMD) or autosomal recessive cone-rod dystrophy (arCRD), five with autosomal recessive retinitis pigmentosa (arRP), and six with autosomal dominant RP (adRP). The mean age of onset was 40.3 years (range 14-56) in the patients with arMD/arCRD, 26.2 years (range 18-40) in adRP, and 8.8 years (range 5-12) in arRP patients. All patients with arMD/arCRD carried either the hypomorphic p.Arg1933* variant positioned close to the C-terminus (8 of 11 patients) or a missense variant in exon 2 (3 of 11 patients), compound heterozygous with a likely deleterious frameshift or nonsense mutation, or the p.Gln1916* variant. In contrast, all mutations identified in adRP and arRP patients were frameshift and/or nonsense variants located far from the C-terminus. Mutations in the RP1 gene are associated with a broad spectrum of progressive retinal dystrophies. In addition to adRP and arRP, our study provides further evidence that arCRD and arMD are RP1-associated phenotypes as well. The macular involvement in patients with the hypomorphic RP1 variant suggests that macular function may remain compromised if expression levels of RP1 do not reach adequate levels after gene augmentation therapy

    The Natural History of Leber Congenital Amaurosis and Cone-Rod Dystrophy Associated with Variants in the GUCY2D Gene

    Get PDF
    OBJECTIVE: To describe the spectrum of Leber congenital amaurosis (LCA) and cone-rod dystrophy (CORD) associated with the GUCY2D gene, and to identify potential clinical endpoints and optimal patient selection for future therapeutic trials. DESIGN: International multicenter retrospective cohort study. SUBJECTS: 82 patients with GUCY2D-associated CORD and LCA from 54 molecularly confirmed families. METHODS: Data were gathered by reviewing medical records for medical history, symptoms, best-corrected visual acuity (BCVA), ophthalmoscopy, visual fields, full-field electroretinography and retinal imaging (fundus photography, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence). MAIN OUTCOMES MEASURES: Age of onset, annual decline of visual acuity, estimated visual impairment per age, genotype-phenotype correlations, anatomic characteristics on funduscopy, and multimodal imaging. RESULTS: Fourteen patients with autosomal recessive LCA and 68 with autosomal dominant CORD were included. The median follow-up time was 5.2 years (interquartile range (IQR), 2.6-8.8) for LCA, and 7.2 years (IQR, 2.2-14.2) for CORD. Generally, LCA presented in the first year of life. The BCVA in LCA ranged from no light perception to 1.00 logMAR, and remained relatively stable during follow-up. Imaging for LCA was limited, but showed little to no structural degeneration. In CORD, progressive vision loss started around the second decade of life. The annual decline rate of visual acuity was 0.022 logMAR (P A and the c.2512C>T GUCY2D variant (P = 0.798). At the age of 40 years the probability of being blind or severely visually impaired was 32%. The integrity of the ellipsoid zone (EZ) and external limiting membrane (ELM) on SD-OCT were correlated significantly with BCVA (Spearman's ρ = 0.744, P = 0.001 and ρ = 0.712, P < 0.001, respectively) in CORD. CONCLUSION: LCA due to variants in GUCY2D results in severe congenital visual impairment with relatively intact macular anatomy on funduscopy and available imaging, suggesting a long preservation of photoreceptors. Despite large variability, GUCY2D-associated CORD generally presented during adolescence with a progressive loss of vision and culminated in severe visual impairment during mid to late-adulthood. The integrity of the ELM and EZ may be suitable structural endpoints for therapeutic studies in GUCY2D-associated CORD

    Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum

    Get PDF
    To describe the clinical and genetic spectrum of RP1-associated retinal dystrophies.; In this multicenter case series, we included 22 patients with RP1-associated retinal dystrophies from 19 families from The Netherlands and Japan. Data on clinical characteristics, visual acuity, visual field, ERG, and retinal imaging were extracted from medical records over a mean follow-up of 8.1 years.; Eleven patients were diagnosed with autosomal recessive macular dystrophy (arMD) or autosomal recessive cone-rod dystrophy (arCRD), five with autosomal recessive retinitis pigmentosa (arRP), and six with autosomal dominant RP (adRP). The mean age of onset was 40.3 years (range 14-56) in the patients with arMD/arCRD, 26.2 years (range 18-40) in adRP, and 8.8 years (range 5-12) in arRP patients. All patients with arMD/arCRD carried either the hypomorphic p.Arg1933* variant positioned close to the C-terminus (8 of 11 patients) or a missense variant in exon 2 (3 of 11 patients), compound heterozygous with a likely deleterious frameshift or nonsense mutation, or the p.Gln1916* variant. In contrast, all mutations identified in adRP and arRP patients were frameshift and/or nonsense variants located far from the C-terminus.; Mutations in the RP1 gene are associated with a broad spectrum of progressive retinal dystrophies. In addition to adRP and arRP, our study provides further evidence that arCRD and arMD are RP1-associated phenotypes as well. The macular involvement in patients with the hypomorphic RP1 variant suggests that macular function may remain compromised if expression levels of RP1 do not reach adequate levels after gene augmentation therapy
    corecore