133 research outputs found

    Computational Investigation of Structure-Function Relationship in Fluorine-Functionalized MOFs for PFOA Capture from Water

    Get PDF
    A strategy that can be used to develop metal-organic frameworks (MOFs) to capture per- and poly-fluoroalkyl substances (PFAS) from water is functionalizing them with fluorine moieties. We investigated different fluorine-functionalization strategies and their performance in removing PFAS from water using molecular simulations. Perfluorooctanoic acid (PFOA), one of the most widely encountered PFAS in water sources, was used as the probe molecule. Our simulations show that fluorine functionalization by incorporating fluorinated anions as bridging ligands in MOFs creates additional binding sites for PFOA; however, the same sites also attract water molecules, which casts doubt on their potential use. In contrast, trifluoromethyl or fluorine substitution of the MOF ligands results in higher hydrophobicity. However, the pores fluorinated with this method should have the optimum size to accommodate PFOA. Likewise, post-synthetic fluorine functionalization of MOFs through grafting of perfluorinated alkanes showed increased PFOA affinity. Fluorine-functionalized MOFs with high hydrophobicity and optimized pore sizes can effectively capture PFOA from water at very low concentrations of PFOA

    Fine-Tuning NER with spaCy for Transliterated Entities Found in Digital Collections From the Multilingual Persian Gulf

    Get PDF
    Text recognition technologies increase access to global archives and make possible their computational study using techniques such as Named Entity Recognition (NER). In this paper, we present an approach to extracting a variety of named entities (NE) in unstructured historical datasets from open digital collections dealing with a space of informal British empire: the Persian Gulf region. The sources are largely concerned with people, places and tribes as well as economic and diplomatic transactions in the region. Since models in state-of-the-art NER systems function with limited tag sets and are generally trained on English-language media, they struggle to capture entities of interest to the historian and do not perform well with entities transliterated from other languages. We build custom spaCy-based NER models trained on domain-specific annotated datasets. We also extend the set of named entity labels provided by spaCy and focus on detecting entities of non-Western origin, particularly from Arabic and Farsi. We test and compare performance of the blank, pre-trained and merged spaCy-based models, suggesting further improvements. Our study makes an intervention into thinking beyond Western notions of the entity in digital historical research by creating more inclusive models using non-metropolitan corpora in English

    Rapid and Efficient Removal of Perfluorooctanoic Acid from Water with Fluorine-Rich Calixarene-Based Porous Polymers

    Get PDF
    On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer–Emmett–Teller (BET) surface areas of up to 450 m^{2} g^{-1}, which is slightly lower than their nonfluorinated counterparts (up to 596 m^{2} g^{-1}). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg^{-1} h^{-1} and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g^{-1}. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance

    Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin

    Get PDF
    The refolding from stretched initial conformations of ubiquitin (PDB ID: 1ubq) under the quenched force is studied using the Go model and the Langevin dynamics. It is shown that the refolding decouples the collapse and folding kinetics. The force quench refolding times scale as tau_F ~ exp(f_q*x_F/k_B*T), where f_q is the quench force and x_F = 0.96 nm is the location of the average transition state along the reaction coordinate given by the end-to-end distance. This value is close to x_F = 0.8 nm obtained from the force-clamp experiments. The mechanical and thermal unfolding pathways are studied and compared with the experimental and all-atom simulation results in detail. The sequencing of thermal unfolding was found to be markedly different from the mechanical one. It is found that fixing the N-terminus of ubiquitin changes its mechanical unfolding pathways much more drastically compared to the case when the C-end is anchored. We obtained the distance between the native state and the transition state x_UF=0.24 nm which is in reasonable agreement with the experimental data.Comment: 35 pages, 15 figures, 1 tabl

    Single-molecule pulling: phenomenology and interpretation

    Full text link
    Single-molecule pulling techniques have emerged as versatile tools for probing the noncovalent forces holding together the secondary and tertiary structure of macromolecules. They also constitute a way to study at the single-molecule level processes that are familiar from our macroscopic thermodynamic experience. In this Chapter, we summarize the essential phenomenology that is typically observed during single-molecule pulling, provide a general statistical mechanical framework for the interpretation of the equilibrium force spectroscopy and illustrate how to simulate single-molecule pulling experiments using molecular dynamics.Comment: arXiv admin note: text overlap with arXiv:0908.220

    Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase

    Get PDF
    [EN] During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (~50 pN).We thank Stephan Grill laboratory (MPI-CBG, Dresden) for help with data collection and E. Galburt, M. Manosas and M. De Vega for critical reading of the manuscript. Spanish Ministry of Economy and Competitiveness [BFU2011-29038 to J.L.C., BFU2013-44202 to J.M.V., BFU2011-23645 to M.S., FIS2010-17440, GR35/10-A920GR35/10-A-911 to F.J.C., MAT2013-49455-EXP to J.R.A.-G. and BFU2012-31825 to B.I.]; Regional Government of Madrid [S2009/MAT 1507 to J.L.C. and CDS2007-0015 to M.S.]; European Molecular Biology Organization [ASTF 276-2012 to J.M.L.]. Funding for open access charge: Spanish Ministry of Economy and Competitiveness [BFU2012-31825 to B.I.].Morin, J.; Cao, F.; Lázaro, J.; Arias-Gonzalez, JR.; Valpuesta, J.; Carrascosa, J.; Salas, M.... (2015). Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase. Nucleic Acids Research. 43(7):3643-3652. https://doi.org/10.1093/nar/gkv204S36433652437Steitz, T. A., & Steitz, J. A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences, 90(14), 6498-6502. doi:10.1073/pnas.90.14.6498Nakamura, T., Zhao, Y., Yamagata, Y., Hua, Y., & Yang, W. (2012). Watching DNA polymerase η make a phosphodiester bond. Nature, 487(7406), 196-201. doi:10.1038/nature11181Kohlstaedt, L., Wang, J., Friedman, J., Rice, P., & Steitz, T. (1992). Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256(5065), 1783-1790. doi:10.1126/science.1377403Steitz, T. A. (2006). Visualizing polynucleotide polymerase machines at work. The EMBO Journal, 25(15), 3458-3468. doi:10.1038/sj.emboj.7601211Zhang, H., Cao, W., Zakharova, E., Konigsberg, W., & De La Cruz, E. M. (2007). Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates. Nucleic Acids Research, 35(18), 6052-6062. doi:10.1093/nar/gkm587Wang, W., Wu, E. Y., Hellinga, H. W., & Beese, L. S. (2012). Structural Factors That Determine Selectivity of a High Fidelity DNA Polymerase for Deoxy-, Dideoxy-, and Ribonucleotides. Journal of Biological Chemistry, 287(34), 28215-28226. doi:10.1074/jbc.m112.366609Berezhna, S. Y., Gill, J. P., Lamichhane, R., & Millar, D. P. (2012). Single-Molecule Förster Resonance Energy Transfer Reveals an Innate Fidelity Checkpoint in DNA Polymerase I. Journal of the American Chemical Society, 134(27), 11261-11268. doi:10.1021/ja3038273Hariharan, C., Bloom, L. B., Helquist, S. A., Kool, E. T., & Reha-Krantz, L. J. (2006). Dynamics of Nucleotide Incorporation:  Snapshots Revealed by 2-Aminopurine Fluorescence Studies†. Biochemistry, 45(9), 2836-2844. doi:10.1021/bi051644sJoyce, C. M., Potapova, O., DeLucia, A. M., Huang, X., Basu, V. P., & Grindley, N. D. F. (2008). Fingers-Closing and Other Rapid Conformational Changes in DNA Polymerase I (Klenow Fragment) and Their Role in Nucleotide Selectivity†. Biochemistry, 47(23), 6103-6116. doi:10.1021/bi7021848Vande Berg, B. J., Beard, W. A., & Wilson, S. H. (2000). DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β. Journal of Biological Chemistry, 276(5), 3408-3416. doi:10.1074/jbc.m002884200Showalter, A. K., & Tsai, M.-D. (2002). A Reexamination of the Nucleotide Incorporation Fidelity of DNA Polymerases†. Biochemistry, 41(34), 10571-10576. doi:10.1021/bi026021iShah, A. M., Li, S.-X., Anderson, K. S., & Sweasy, J. B. (2001). Y265H Mutator Mutant of DNA Polymerase β. Journal of Biological Chemistry, 276(14), 10824-10831. doi:10.1074/jbc.m008680200Rothwell, P. J., Mitaksov, V., & Waksman, G. (2005). Motions of the Fingers Subdomain of Klentaq1 Are Fast and Not Rate Limiting: Implications for the Molecular Basis of Fidelity in DNA Polymerases. Molecular Cell, 19(3), 345-355. doi:10.1016/j.molcel.2005.06.032Patel, S. S., Wong, I., & Johnson, K. A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry, 30(2), 511-525. doi:10.1021/bi00216a029Luo, G., Wang, M., Konigsberg, W. H., & Xie, X. S. (2007). Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase. Proceedings of the National Academy of Sciences, 104(31), 12610-12615. doi:10.1073/pnas.0700920104Joyce, C. M., & Benkovic, S. J. (2004). DNA Polymerase Fidelity:  Kinetics, Structure, and Checkpoints†. Biochemistry, 43(45), 14317-14324. doi:10.1021/bi048422zFiala, K. A., & Suo, Z. (2004). Mechanism of DNA Polymerization Catalyzed bySulfolobus solfataricusP2 DNA Polymerase IV†. Biochemistry, 43(7), 2116-2125. doi:10.1021/bi035746zCramer, J., & Restle, T. (2005). Pre-steady-state Kinetic Characterization of the DinB Homologue DNA Polymerase ofSulfolobus solfataricus. Journal of Biological Chemistry, 280(49), 40552-40558. doi:10.1074/jbc.m504481200Choi, J.-Y., & Guengerich, F. P. (2005). Adduct Size Limits Efficient and Error-free Bypass Across Bulky N2-Guanine DNA Lesions by Human DNA Polymerase η. Journal of Molecular Biology, 352(1), 72-90. doi:10.1016/j.jmb.2005.06.079Olsen, T. J., Choi, Y., Sims, P. C., Gul, O. T., Corso, B. L., Dong, C., … Weiss, G. A. (2013). Electronic Measurements of Single-Molecule Processing by DNA Polymerase I (Klenow Fragment). Journal of the American Chemical Society, 135(21), 7855-7860. doi:10.1021/ja311603rAllen, W. J., Rothwell, P. J., & Waksman, G. (2008). An intramolecular FRET system monitors fingers subdomain opening in Klentaq1. Protein Science, 17(3), 401-408. doi:10.1110/ps.073309208Johnson, S. J., & Beese, L. S. (2004). Structures of Mismatch Replication Errors Observed in a DNA Polymerase. Cell, 116(6), 803-816. doi:10.1016/s0092-8674(04)00252-1Yin, Y. W., & Steitz, T. A. (2004). The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase. Cell, 116(3), 393-404. doi:10.1016/s0092-8674(04)00120-5Golosov, A. A., Warren, J. J., Beese, L. S., & Karplus, M. (2010). The Mechanism of the Translocation Step in DNA Replication by DNA Polymerase I: A Computer Simulation Analysis. Structure, 18(1), 83-93. doi:10.1016/j.str.2009.10.014Zhang, C., & Burton, Z. F. (2004). Transcription Factors IIF and IIS and Nucleoside Triphosphate Substrates as Dynamic Probes of the Human RNA Polymerase II Mechanism. Journal of Molecular Biology, 342(4), 1085-1099. doi:10.1016/j.jmb.2004.07.070Nedialkov, Y. A., Gong, X. Q., Hovde, S. L., Yamaguchi, Y., Handa, H., Geiger, J. H., … Burton, Z. F. (2003). NTP-driven Translocation by Human RNA Polymerase II. Journal of Biological Chemistry, 278(20), 18303-18312. doi:10.1074/jbc.m301103200Gong, X. Q., Zhang, C., Feig, M., & Burton, Z. F. (2005). Dynamic Error Correction and Regulation of Downstream Bubble Opening by Human RNA Polymerase II. Molecular Cell, 18(4), 461-470. doi:10.1016/j.molcel.2005.04.011Guajardo, R., & Sousa, R. (1997). A model for the mechanism of polymerase translocation 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 265(1), 8-19. doi:10.1006/jmbi.1996.0707Thomen, P., Lopez, P. J., & Heslot, F. (2005). Unravelling the Mechanism of RNA-Polymerase Forward Motion by Using Mechanical Force. Physical Review Letters, 94(12). doi:10.1103/physrevlett.94.128102Larson, M. H., Zhou, J., Kaplan, C. D., Palangat, M., Kornberg, R. D., Landick, R., & Block, S. M. (2012). Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings of the National Academy of Sciences, 109(17), 6555-6560. doi:10.1073/pnas.1200939109Bar-Nahum, G., Epshtein, V., Ruckenstein, A. E., Rafikov, R., Mustaev, A., & Nudler, E. (2005). A Ratchet Mechanism of Transcription Elongation and Its Control. Cell, 120(2), 183-193. doi:10.1016/j.cell.2004.11.045Bai, L., Fulbright, R. M., & Wang, M. D. (2007). Mechanochemical Kinetics of Transcription Elongation. Physical Review Letters, 98(6). doi:10.1103/physrevlett.98.068103Abbondanzieri, E. A., Greenleaf, W. J., Shaevitz, J. W., Landick, R., & Block, S. M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature, 438(7067), 460-465. doi:10.1038/nature04268Dangkulwanich, M., Ishibashi, T., Liu, S., Kireeva, M. L., Lubkowska, L., Kashlev, M., & Bustamante, C. J. (2013). Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife, 2. doi:10.7554/elife.00971Lieberman, K. R., Dahl, J. M., Mai, A. H., Cox, A., Akeson, M., & Wang, H. (2013). Kinetic Mechanism of Translocation and dNTP Binding in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 135(24), 9149-9155. doi:10.1021/ja403640bLieberman, K. R., Dahl, J. M., Mai, A. H., Akeson, M., & Wang, H. (2012). Dynamics of the Translocation Step Measured in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 134(45), 18816-18823. doi:10.1021/ja3090302Dahl, J. M., Mai, A. H., Cherf, G. M., Jetha, N. N., Garalde, D. R., Marziali, A., … Lieberman, K. R. (2012). Direct Observation of Translocation in Individual DNA Polymerase Complexes. Journal of Biological Chemistry, 287(16), 13407-13421. doi:10.1074/jbc.m111.338418Rodriguez, I., Lazaro, J. M., Blanco, L., Kamtekar, S., Berman, A. J., Wang, J., … de Vega, M. (2005). A specific subdomain in  29 DNA polymerase confers both processivity and strand-displacement capacity. Proceedings of the National Academy of Sciences, 102(18), 6407-6412. doi:10.1073/pnas.0500597102Morin, J. A., Cao, F. J., Valpuesta, J. M., Carrascosa, J. L., Salas, M., & Ibarra, B. (2012). Manipulation of single polymerase-DNA complexes: A mechanical view of DNA unwinding during replication. Cell Cycle, 11(16), 2967-2968. doi:10.4161/cc.21389Morin, J. A., Cao, F. J., Lazaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., … Ibarra, B. (2012). Active DNA unwinding dynamics during processive DNA replication. Proceedings of the National Academy of Sciences, 109(21), 8115-8120. doi:10.1073/pnas.1204759109Ibarra, B., Chemla, Y. R., Plyasunov, S., Smith, S. B., Lázaro, J. M., Salas, M., & Bustamante, C. (2009). Proofreading dynamics of a processive DNA polymerase. The EMBO Journal, 28(18), 2794-2802. doi:10.1038/emboj.2009.219Bustamante, C., Chemla, Y. R., Forde, N. R., & Izhaky, D. (2004). Mechanical Processes in Biochemistry. Annual Review of Biochemistry, 73(1), 705-748. doi:10.1146/annurev.biochem.72.121801.161542Jahnel, M., Behrndt, M., Jannasch, A., Schäffer, E., & Grill, S. W. (2011). Measuring the complete force field of an optical trap. Optics Letters, 36(7), 1260. doi:10.1364/ol.36.001260Soengas, M. S., Esteban, J. A., Lázaro, J. M., Bernad, A., Blasco, M. A., Salas, M., & Blanco, L. (1992). Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3′-5′ exonuclease and strand-displacement activities. The EMBO Journal, 11(11), 4227-4237. doi:10.1002/j.1460-2075.1992.tb05517.xSoengas, M. S., Gutiérrez, C., & Salas, M. (1995). Helix-destabilizing Activity of φ29 Single-stranded DNA Binding Protein: Effect on the Elongation Rate During Strand Displacement DNA Replication. Journal of Molecular Biology, 253(4), 517-529. doi:10.1006/jmbi.1995.0570De Vega, M., Lazaro, J. M., Salas, M., & Blanco, L. (1996). Primer-terminus stabilization at the 3′-5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. The EMBO Journal, 15(5), 1182-1192. doi:10.1002/j.1460-2075.1996.tb00457.xVisscher, K., Schnitzer, M. J., & Block, S. M. (1999). Single kinesin molecules studied with a molecular force clamp. Nature, 400(6740), 184-189. doi:10.1038/22146Pandey, M., & Patel, S. S. (2014). Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps. Cell Reports, 6(6), 1129-1138. doi:10.1016/j.celrep.2014.02.025Truniger, V. (2002). A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Research, 30(7), 1483-1492. doi:10.1093/nar/30.7.1483Berman, A. J., Kamtekar, S., Goodman, J. L., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2007). Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. The EMBO Journal, 26(14), 3494-3505. doi:10.1038/sj.emboj.7601780Thomen, P., Lopez, P. J., Bockelmann, U., Guillerez, J., Dreyfus, M., & Heslot, F. (2008). T7 RNA Polymerase Studied by Force Measurements Varying Cofactor Concentration. Biophysical Journal, 95(5), 2423-2433. doi:10.1529/biophysj.107.125096Keller, D., & Bustamante, C. (2000). The Mechanochemistry of Molecular Motors. Biophysical Journal, 78(2), 541-556. doi:10.1016/s0006-3495(00)76615-xHerbert, K. M., Greenleaf, W. J., & Block, S. M. (2008). Single-Molecule Studies of RNA Polymerase: Motoring Along. Annual Review of Biochemistry, 77(1), 149-176. doi:10.1146/annurev.biochem.77.073106.100741Wong, I., Patel, S. S., & Johnson, K. A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry, 30(2), 526-537. doi:10.1021/bi00216a030Lowe, L. G., & Guengerich, F. P. (1996). Steady-State and Pre-Steady-State Kinetic Analysis of dNTP Insertion Opposite 8-Oxo-7,8-dihydroguanine byEscherichia coliPolymerases I exo-and II exo- †. Biochemistry, 35(30), 9840-9849. doi:10.1021/bi960485xKirmizialtin, S., Nguyen, V., Johnson, K. A., & Elber, R. (2012). How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations. Structure, 20(4), 618-627. doi:10.1016/j.str.2012.02.018Donlin, M. J., Patel, S. S., & Johnson, K. A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry, 30(2), 538-546. doi:10.1021/bi00216a031Li, Y. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. The EMBO Journal, 17(24), 7514-7525. doi:10.1093/emboj/17.24.7514Lieberman, K. R., Dahl, J. M., & Wang, H. (2014). Kinetic Mechanism at the Branchpoint between the DNA Synthesis and Editing Pathways in Individual DNA Polymerase Complexes. Journal of the American Chemical Society, 136(19), 7117-7131. doi:10.1021/ja5026408Subuddhi, U., Hogg, M., & Reha-Krantz, L. J. (2008). Use of 2-Aminopurine Fluorescence To Study the Role of the β Hairpin in the Proofreading Pathway Catalyzed by the Phage T4 and RB69 DNA Polymerases†. Biochemistry, 47(23), 6130-6137. doi:10.1021/bi800211fShamoo, Y., & Steitz, T. A. (1999). Building a Replisome from Interacting Pieces. Cell, 99(2), 155-166. doi:10.1016/s0092-8674(00)81647-5Lamichhane, R., Berezhna, S. Y., Gill, J. P., Van der Schans, E., & Millar, D. P. (2013). Dynamics of Site Switching in DNA Polymerase. Journal of the American Chemical Society, 135(12), 4735-4742. doi:10.1021/ja311641bKamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., … Steitz, T. A. (2004). Insights into Strand Displacement and Processivity from the Crystal Structure of the Protein-Primed DNA Polymerase of Bacteriophage φ29. Molecular Cell, 16(4), 609-618. doi:10.1016/j.molcel.2004.10.019Hogg, M., Wallace, S. S., & Doublié, S. (2004). Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. The EMBO Journal, 23(7), 1483-1493. doi:10.1038/sj.emboj.7600150Seifert, U. (2012). Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on Progress in Physics, 75(12), 126001. doi:10.1088/0034-4885/75/12/126001Cao, F. J., & Feito, M. (2009). Thermodynamics of feedback controlled systems. Physical Review E, 79(4). doi:10.1103/physreve.79.041118Cao, F. J., Dinis, L., & Parrondo, J. M. R. (2004). Feedback Control in a Collective Flashing Ratchet. Physical Review Letters, 93(4). doi:10.1103/physrevlett.93.040603Bier, M. (2007). The stepping motor protein as a feedback control ratchet. Biosystems, 88(3), 301-307. doi:10.1016/j.biosystems.2006.07.013Astumian, R. D. (1997). Thermodynamics and Kinetics of a Brownian Motor. Science, 276(5314), 917-922. doi:10.1126/science.276.5314.917Komissarova, N., & Kashlev, M. (1997). Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3’ end of the RNA intact and extruded. Proceedings of the National Academy of Sciences, 94(5), 1755-1760. doi:10.1073/pnas.94.5.1755Brueckner, F., & Cramer, P. (2008). Structural basis of transcription inhibition by α-amanitin and implications for RNA polymerase II translocation. Nature Structural & Molecular Biology, 15(8), 811-818. doi:10.1038/nsmb.145

    Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry

    Get PDF
    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake
    corecore