12 research outputs found

    Cereal biofortification : strategies, challenges and benefits

    Get PDF
    Under-nutrition is a key underlying cause of the 10 million child deaths each year—most of which are preventable and most of which occur in poor countries. The major direct causes of under-nutrition in poor developing countries are insufficient food intake and an unbalanced diet caused by lack of variety in available foods coupled with disease outbreaks. This study shows that the majority of children living in rural Burkina Faso are severely undernourished as a result of the low amount of food they consume, their lack of dietary diversity, and, consequently, their low intake of many macro- and micronutrients. Replacement of normal cereal staples with biofortified crops would not affect the amount of food consumed per se. However, the strategy of most biofortification programs is to add nutrients to the most profitable and highest yielding varieties available, which would address, to some extent, the issue of insufficient food availability. For biofortified cereals to make a broad impact on the nutritional status of undernourished children in rural Africa, ideally the predominant cereals consumed should be enhanced with multiple critical nutrientsThe Bill and Melinda Gates Grand Challenges 9, Africa Biofortified Sorghum (ABS) Project through a sub-grant from the Africa Harvest Biotechnology Foundation International.http://www.aaccnet.org/publications/plexus/cfw/pastissues/2012/Pages/CFW-57-4-0165.asp

    ACUTE TOXICITY AND VASCULAR PROPERTIES OF SEED OF PARKIA BIGLOBOSA (JACQ) R. BR GIFT (MIMOSACEAE) ON RAT AORTA.

    Get PDF
    The authors report here the results of study on Parkia biglobosa seeds used in Burkina Faso for arterial hypertension treatment. Investigations were done on acute toxicity and vascular properties of fermented and roasted seeds. Acute toxicity test using mice, revealed by the intraperitoneal route a lethal dose 50 (LD50) of 1800 mg/kg and 1600 mg/kg of body weight for aqueous extract from roasted and fermented seeds respectively. According to the scale of Hodge and Sterner and that of the World Health Organization, such drugs would be classified lightly toxic. Oral administration (up to 3000 mg/kg) did not induce any death of animal. For the vascular properties, the effects of these products were tested on the aorta isolated from rats. The cumulative administration of extract from roasted and fermented seeds (0.1-10 mg/mL) in an organ bath induced a concentration-dependent relaxation of the aorta pre contracted by phenylephrine, with or without functional endothelium. The extracts (10 mg/mL) inhibited for 100% the contraction induced by phenylephrine. The EC50 values in presence and absence of endothelium were respectively of 5.37 ± 0.12 and 4.19 ± 1.02 mg/mL for fermented seeds; for roasted seeds these values were respectively, 5.39 ± 1.12 and 5.93 ± 0.95 mg/mL. Nevertheless, low concentration of roasted seeds (1-4 mg/mL) induced endothelium-dependent relaxation and this effect was inhibited by indomethacin (10-5M), and not by L-NAME (310-4M). These experimental results revealed a vasorelaxant effect of P. biglobosa seeds. P. biglobosa seems to act directly on the smooth muscle and via endothelium involving the generation of vasodilatating prostaglandins. This vasodilator effect would be in favor of an anti hypertensive property of P. biglobosa seeds

    Quality control and standardization of FACAÂź syrup

    Get PDF
    Sickle cell disease is a major public health problem. It is the first genetic disease in the world. FACA syrup offers an alternative treatment. It is a dry powder preparation of two components, the roots barks of Zanthoxylum zanthoxyloides Lam. (Rutaceae) Zepernick, Timler and Calotropis procera. Ait. R.B.r. (Asclepiadaceae). The product was developed at Institute for Research in Health Sciences (IRSS) from a traditional recipe used in Burkina Faso for treatment of sickle cell crises. This study aimed to establish physical-chemical, pharmaco technical and microbiological control parameters essential for the standardization of the phytomedicine. This valuation concerned specifications of moisture content, pH, the fingerprint by thin layer chromatography, pesticide residues, heavy metal content, microbial quality, and total ash. These charcteristics were determined by the methods prescribed by the World Health Organization (1998) and the European Pharmacopoeia 6th edition. The results have shown that dry syrups and reconstituted syrups were sweet, slightly spicy with a bitter after taste, a white room color and a faint odor. The density at the preparation was 0.985 and the pH was 5.93. After 2 months of storage in the laboratory, the organoleptic parameters of the reconstituted syrups have not changed. They were mold free, the density remained around 1 and the pH between 5 and 4. These parameters have shown that the quality of plants powders and these medicine comply with the recommendations of the European pharmacopoeia. Faca syrup may contribute to the better management of sickle cell disease in children

    Inhibition of histone deacetylase in utero causes sociability deficits in postnatal mice

    No full text
    Exposure to sodium valproate (VPA) in utero increases the risk of language impairment and a diagnosis of autism spectrum disorder (ASD). Mice exposed to VPA while in utero have also shown postnatal social deficits. Inhibition of histone deacetylase (HDAC) is one of VPA's many biological effects. The main objective of this study was to test the hypothesis that HDAC inhibition causes these behavioral outcomes following prenatal VPA exposure in mice. We exposed embryonic mice to VPA, the HDAC inhibitor trichostatin A (TSA), or vehicle controls. TSA (1. mg/kg) inhibited HDAC in embryonic tissue at a level comparable to 600. mg/kg VPA, resulting in significant increases in histone H3 and H4 acetylation, and histone H3 lysine 4 tri-methylation. Postnatally, decreases in ultrasonic vocalization, olfactory motivation and sociability were observed in TSA and VPA-exposed pups. Treated mice exhibited elevated digging and grooming suggestive of mild restrictive and repetitive behaviors. Olfactory social preference, social novelty and habituation were normal. Together, these data indicate that embryonic HDAC inhibition alone can cause abnormal social behaviors in mice. This result serves as a molecular understanding of infant outcomes following mild VPA exposure in utero

    Biallelic variants in PIGN cause Fryns syndrome, multiple congenital anomalies-hypotonia-seizures syndrome, and neurologic phenotypes: A genotype-phenotype correlation study

    No full text
    PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered

    Organic Constituents of Fish and Other Aquatic Animal Foods

    No full text

    The autophagy in osteoimmonology: Self-eating, maintenance, and beyond

    No full text
    It has been long realized that the immune and skeletal systems are closely linked. This crosstalk, also known as osteoimmunology, is a primary process required for bone health. For example, the immune system acts as a key regulator in osteoclasts-osteoblasts coupling to maintain the balanced bone remodeling. Osteoimmunology is achieved through many cellular and molecular processes, among which autophagy has recently been found to play an indispensable role. Autophagy is a highly conserved process in eukaryotic cells, by which the cytoplasm components such as dysfunctional organelles are degraded through lysosomes and then returned to the cytosol for reuse. Autophagy is present in all cells at basal levels to maintain homeostasis and to promote cell survival in response to cellular stress conditions such as nutrition deprivation and hypoxia. Autophagy is a required process in immune cell activation/polarization and osteoclast differentiation, which protecting cells from oxidative stress. The essential of autophagy in osteogenesis is its involvement in osteoblast differentiation and mineralization, especially the role of autophagosome in extracellular calcium transportation. The modulatory feature of autophagy in both immune and skeleton systems suggests its crucial roles in osteoimmunology. Furthermore, autophagy also participates in the maintenance of bone marrow hematopoietic stem cell niche. The focus of this review is to highlight the role of autophagy in the immune-skeleton interactions and the effects on bone physiology, as well as the future application in translational research
    corecore