71 research outputs found

    Falling into TRAPS – receptor misfolding in the TNF receptor 1-associated periodic fever syndrome

    Get PDF
    TNF receptor-associated periodic syndrome (TRAPS) is a dominantly inherited disease caused by missense mutations in the TNF receptor 1 (TNFR1) gene. Patients suffer from periodic bouts of severe abdominal pain, localised inflammation, migratory rashes, and fever. More than 40 individual mutations have been identified, all of which occur in the extracellular domain of TNFR1. In the present review we discuss new findings describing aberrant trafficking and function of TNFR1 harbouring TRAPS mutations, challenging the hypothesis that TRAPS pathology is driven by defective receptor shedding, and we suggest that TNFR1 might acquire novel functions in the endoplasmic reticulum, distinct from its role as a cell surface receptor. We also describe the clinical manifestations of TRAPS, current treatment regimens, and the widening array of patient mutations

    Reduced Transmissibility of East African Indian Strains of Mycobacterium tuberculosis

    Get PDF
    BACKGROUND: Mycobacterium tuberculosis (MTB) has been classified into 4 main lineages. Some reports have associated certain lineages with particular clinical phenotypes, but there is still insufficient information regarding the clinical and epidemiologic implications of MTB lineage variation. METHODS: Using large sequence polymorphisms we classified MTB isolates from a population-based study in Montreal, Canada into the 4 major lineages, and identified the associated clinical and epidemiologic features. In addition, IS6110-RFLP and spoligotyping were used as indicators of recent TB transmission. The study population was divided into a derivation cohort, diagnosed between 2001 and 2007, and a separate validation cohort, diagnosed between 1996 and 2000. RESULTS: In the derivation cohort, when compared to the other MTB lineages, the East African-Indian (EAI) lineage was associated with lower rates of TB transmission, as measured by: positive TST among close contacts of pulmonary TB cases (adjusted odds ratio 0.6: [95% confidence interval 0.4-0.9]), and clustered TB cases (0.3: [<0.001-0.6]). Severe forms of TB were also less likely among the EAI group (0.4: [<0.001-0.8]). There were no significant differences when comparing patients with the other MTB lineages. In the validation cohort, the EAI lineage was associated with lower rates of positive TST among contacts (0.5: [0.3-0.9]) and a trend towards less clustered TB cases (0.5: [0.1-1.8]) when compared to the other lineages. Disease severity among the different groups was not significantly different in the validation cohort. CONCLUSIONS: We conclude that in Montreal, EAI strains were associated with reduced transmission compared to other MTB lineages

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Evidence of prokineticin dysregulation in fallopian tube from women with ectopic pregnancy

    Get PDF
    OBJECTIVE: To demonstrate expression and regulation of prokineticins (PROKs) and their receptors (PROKRs) in Fallopian tube (FT) from non-pregnant women and women with ectopic pregnancy (EP). DESIGN: Tissue analysis. SETTING: Large UK teaching hospital PATIENTS: Women undergoing hysterectomy for benign gynecological conditions (n=15) and surgery for EP (n=16). INTERVENTIONS: Quantitative RT-PCR and immunohistochemistry were used to determine FT PROK/PROKR mRNA expression and protein localization, respectively. PROK/PROKR levels were measured in tubal explant cultures stimulated with estrogen and progestogen. MAIN OUTCOME MEASURES: Differential expression of PROK and PROKR. RESULTS: FT PROK2 and PROKR1 mRNA levels were upregulated during the progesterone-dominant mid-luteal phase of the menstrual cycle. Increased PROKR1 expression was observed in tubal explant cultures treated with medroxyprogesterone acetate. PROK and PROKR proteins were localized to the epithelium and smooth muscle layers of the FT. PROKR1 and PROKR2 mRNA levels were lower in FT from women with EP compared to non-pregnant FT from the mid-luteal phase. CONCLUSION: These data suggest a potential role for PROKs in FT function. PROKs are known to affect smooth muscle contraction in the gut. Dysregulated PROK expression in FT could affect FT smooth muscle contractility and embryo-tubal transport, providing a potential cause for EP

    Candidate locus analysis of the TERT-CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk.

    Get PDF
    Several studies have reported associations between multiple cancer types and single-nucleotide polymorphisms (SNPs) on chromosome 5p15, which harbours TERT and CLPTM1L, but no such association has been reported with endometrial cancer. To evaluate the role of genetic variants at the TERT-CLPTM1L region in endometrial cancer risk, we carried out comprehensive fine-mapping analyses of genotyped and imputed SNPs using a custom Illumina iSelect array which includes dense SNP coverage of this region. We examined 396 SNPs (113 genotyped, 283 imputed) in 4,401 endometrial cancer cases and 28,758 controls. Single-SNP and forward/backward logistic regression models suggested evidence for three variants independently associated with endometrial cancer risk (P = 4.9 × 10(-6) to P = 7.7 × 10(-5)). Only one falls into a haplotype previously associated with other cancer types (rs7705526, in TERT intron 1), and this SNP has been shown to alter TERT promoter activity. One of the novel associations (rs13174814) maps to a second region in the TERT promoter and the other (rs62329728) is in the promoter region of CLPTM1L; neither are correlated with previously reported cancer-associated SNPs. Using TCGA RNASeq data, we found significantly increased expression of both TERT and CLPTM1L in endometrial cancer tissue compared with normal tissue (TERT P = 1.5 × 10(-18), CLPTM1L P = 1.5 × 10(-19)). Our study thus reports a novel endometrial cancer risk locus and expands the spectrum of cancer types associated with genetic variation at 5p15, further highlighting the importance of this region for cancer susceptibility.This work was supported by the NHMRC Project Grant (ID#1031333). This work was also supported by Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692)This is the published version. It first appeared at http://link.springer.com/article/10.1007%2Fs00439-014-1515-4

    Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

    Get PDF
    Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre
    corecore