21 research outputs found

    Oral abstracts 3: RA Treatment and outcomesO13. Validation of jadas in all subtypes of juvenile idiopathic arthritis in a clinical setting

    Get PDF
    Background: Juvenile Arthritis Disease Activity Score (JADAS) is a 4 variable composite disease activity (DA) score for JIA (including active 10, 27 or 71 joint count (AJC), physician global (PGA), parent/child global (PGE) and ESR). The validity of JADAS for all ILAR subtypes in the routine clinical setting is unknown. We investigated the construct validity of JADAS in the clinical setting in all subtypes of JIA through application to a prospective inception cohort of UK children presenting with new onset inflammatory arthritis. Methods: JADAS 10, 27 and 71 were determined for all children in the Childhood Arthritis Prospective Study (CAPS) with complete data available at baseline. Correlation of JADAS 10, 27 and 71 with single DA markers was determined for all subtypes. All correlations were calculated using Spearman's rank statistic. Results: 262/1238 visits had sufficient data for calculation of JADAS (1028 (83%) AJC, 744 (60%) PGA, 843 (68%) PGE and 459 (37%) ESR). Median age at disease onset was 6.0 years (IQR 2.6-10.4) and 64% were female. Correlation between JADAS 10, 27 and 71 approached 1 for all subtypes. Median JADAS 71 was 5.3 (IQR 2.2-10.1) with a significant difference between median JADAS scores between subtypes (p < 0.01). Correlation of JADAS 71 with each single marker of DA was moderate to high in the total cohort (see Table 1). Overall, correlation with AJC, PGA and PGE was moderate to high and correlation with ESR, limited JC, parental pain and CHAQ was low to moderate in the individual subtypes. Correlation coefficients in the extended oligoarticular, rheumatoid factor negative and enthesitis related subtypes were interpreted with caution in view of low numbers. Conclusions: This study adds to the body of evidence supporting the construct validity of JADAS. JADAS correlates with other measures of DA in all ILAR subtypes in the routine clinical setting. Given the high frequency of missing ESR data, it would be useful to assess the validity of JADAS without inclusion of the ESR. Disclosure statement: All authors have declared no conflicts of interest. Table 1Spearman's correlation between JADAS 71 and single markers DA by ILAR subtype ILAR Subtype Systemic onset JIA Persistent oligo JIA Extended oligo JIA Rheumatoid factor neg JIA Rheumatoid factor pos JIA Enthesitis related JIA Psoriatic JIA Undifferentiated JIA Unknown subtype Total cohort Number of children 23 111 12 57 7 9 19 7 17 262 AJC 0.54 0.67 0.53 0.75 0.53 0.34 0.59 0.81 0.37 0.59 PGA 0.63 0.69 0.25 0.73 0.14 0.05 0.50 0.83 0.56 0.64 PGE 0.51 0.68 0.83 0.61 0.41 0.69 0.71 0.9 0.48 0.61 ESR 0.28 0.31 0.35 0.4 0.6 0.85 0.43 0.7 0.5 0.53 Limited 71 JC 0.29 0.51 0.23 0.37 0.14 -0.12 0.4 0.81 0.45 0.41 Parental pain 0.23 0.62 0.03 0.57 0.41 0.69 0.7 0.79 0.42 0.53 Childhood health assessment questionnaire 0.25 0.57 -0.07 0.36 -0.47 0.84 0.37 0.8 0.66 0.4

    Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes.

    Get PDF
    Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals.JW is supported by a Cancer Research UK Cambridge Cancer Centre Clinical Research Training Fellowship. Funding for the NIHR BioResource – Rare diseases project was provided by the National Institute for Health Research (NIHR, grant number RG65966). ERM acknowledges support from the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre), Cancer Research UK Cambridge Cancer Centre and Medical Research Council Infrastructure Award. The University of Cambridge has received salary support in respect of EM from the NHS in the East of England through the Clinical Academic Reserve. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. DGE is an NIHR Senior Investigator and is supported by the all Manchester NIHR Biomedical Research Centre

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre

    The uncertain climate footprint of wetlands under human pressure

    Get PDF
    Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems,making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse– response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Twelve tips for optimising learning for postgraduate doctors in the operating theatre

    No full text
    Learning in the operating theatre forms a critical part of postgraduate medical education. Postgraduate doctors present a diverse cohort of learners with a wide range of learning needs that will vary by their level of experience and curriculum requirements. With evidence of both trainee dissatisfaction with the theatre learning experience and reduced time spent in the operating theatre, which has been exacerbated by the effects of the Covid-19 pandemic, it is vital that every visit to the operating theatre is used as a learning opportunity. We have devised 12 tips aimed at both learners and surgeons to optimise learning in the operating theatre, set out into four domains: educational context, preparation, learning in theatre, feedback and reflection. These tips have been created by a process of literature review and acknowledgment of established learning theory, with further discussion amongst surgical trainees, senior surgical faculty, surgical educators and medical education faculty

    The uncertain climate footprint of wetlands under human pressure

    No full text
    Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and managed wetlands, and cover a wide range of climatic regions, ecosystem types and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e. several centuries), typically offset by CO2 uptake, though with large spatio-temporal variability. Using a space-for-time analogy across ecological and climatic gradients we represent the chronosequence from natural to managed conditions in order to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new IPCC guidelines accounting for both sustained CH4 emissions and cumulative CO2 exchange.JRC.H.7-Climate Risk Managemen
    corecore