118 research outputs found

    Identity crisis in pulmonary arterial hypertension

    Get PDF
    International audiencePulmonary arterial hypertension (PAH) shares many hallmarks with cancer. Cancer cells acquire their hallmarks by a pathological Darwinian evolution process built on the so-called cancer cell ''identity crisis.'' Here we demonstrate that PAH shares the most striking features of the cancer identity crisis: the ectopic expression of normally silent tissue-specific genes

    Identification of a novel BET bromodomain inhibitor-sensitive, gene regulatory circuit that controls Rituximab response and tumour growth in aggressive lymphoid cancers.: CYCLON-induced Rituximab resistance

    Get PDF
    International audienceImmuno-chemotherapy elicit high response rates in B-cell non-Hodgkin lymphoma but heterogeneity in response duration is observed, with some patients achieving cure and others showing refractory disease or relapse. Using a transcriptome-powered targeted proteomics screen, we discovered a gene regulatory circuit involving the nuclear factor CYCLON which characterizes aggressive disease and resistance to the anti-CD20 monoclonal antibody, Rituximab, in high-risk B-cell lymphoma. CYCLON knockdown was found to inhibit the aggressivity of MYC-overexpressing tumours in mice and to modulate gene expression programs of biological relevance to lymphoma. Furthermore, CYCLON knockdown increased the sensitivity of human lymphoma B cells to Rituximab in vitro and in vivo. Strikingly, this effect could be mimicked by in vitro treatment of lymphoma B cells with a small molecule inhibitor for BET bromodomain proteins (JQ1). In summary, this work has identified CYCLON as a new MYC cooperating factor that autonomously drives aggressive tumour growth and Rituximab resistance in lymphoma. This resistance mechanism is amenable to next-generation epigenetic therapy by BET bromodomain inhibition, thereby providing a new combination therapy rationale for high-risk lymphoma

    DNA Replication Fading As Proliferating Cells Advance in Their Commitment to Terminal Differentiation

    Get PDF
    Terminal differentiation is the process by which cycling cells stop proliferating to start new specific functions. It involves dramatic changes in chromatin organization as well as gene expression. In the present report we used cell flow cytometry and genome wide DNA combing to investigate DNA replication during murine erythroleukemia-induced terminal cell differentiation. The results obtained indicated that the rate of replication fork movement slows down and the inter-origin distance becomes shorter during the precommitment and commitment periods before cells stop proliferating and accumulate in G1. We propose this is a general feature caused by the progressive heterochromatinization that characterizes terminal cell differentiation

    Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins

    Get PDF
    The vertebrate kinetochore complex assembles at the centromere on α-satellite DNA. In humans, α-satellite DNA has a repeat length of 171 bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to α-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1° and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins

    A unified phylogeny-based nomenclature for histone variants

    Get PDF
    Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure

    MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones

    Get PDF

    Histone H1 Subtypes Differentially Modulate Chromatin Condensation without Preventing ATP-Dependent Remodeling by SWI/SNF or NURF

    Get PDF
    Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors

    Iuso-et-al_RawData

    No full text
    Raw data corresponding to the manuscript by : Domenico Iuso, Isabel Garcia-Saez, Yohann Couté, Yoshiki Yamaryo-Botté, Elisabetta Boeri Erba, Annie Adrait, Nour Zeaiter, Malgorzata Tokarska-Schlattner, Zuzana Macek Jilkova, Fayçal Boussouar, Sophie Barral, Luca Signor, Karine Couturier, Azadeh Hajmirza, Florent Chuffart, Anne-Laure Vitte, Lisa Bargier, Denis Puthier, Thomas Decaens, Sophie Rousseaux, Cyrille Botté, Uwe Schlattner, Carlo Petosa, Saadi KhochbinTHIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    corecore