19 research outputs found

    Expression of FGFR3 Protein and Gene Amplification in Urinary Bladder Lesions in Relation to Schistosomiasis

    Get PDF
    BACKGROUND: Bladder cancer represents the fifth most common malignancy worldwide and a major cause of cancer-related morbidity and death. Incidence and mortality rates have remained relatively constant over the past four decades. Urothelial bladder cancers have identified multiple risk factors.AIM: We aimed at evaluating the expression of the FGFR3 protein and gene amplification in the urothelial cells of neoplastic and non-neoplastic urothelial lesions of the urinary bladder, and correlation with tumour grade, stage and associated bilharziasis.MATERIAL AND METHODS: One hundred and five different urinary bladder lesions were studied, including 15 cystitis cases (9 bilharzial and 6 non-bilharzial cystitides), 75 urothelial carcinoma cases (18 bilharzial associated and 57 non-bilharzial associated) and 15 squamous cell carcinoma associated with bilharziasis, beside 5 control cases. Data concerning age, sex, tumour grade, stage, and associated bilharziasis were obtained. Each case was studied for FGFR3 expression, and FISH technique was applied on forty malignant cases that show high protein expression.RESULTS: The highest incidence of cystitis was in the fourth decade while of bladder cancer was in the seventh decade. Tumour grade was correlated significantly with tumour stage. FGFR3 correlates significantly with tumour grade, stage and with a bilharzial infestation. FGFR3 gene amplification was reported mainly in low grade and NNMBIC tumours.CONCLUSIONS: FGFR3 overexpression in malignant cases was significantly higher than in chronic cystitis. FGFR3 gene amplification was reported mainly in low grade and NNMBIC tumours. FGFR3 may be further studied as a subject for target therapy of bladder cancer

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Immunophenotyping of Peripheral Blood Lymphocytes in Saudi Men

    No full text
    Flow cytometry is an important tool for the diagnosis and follow-up of immunodeficiency patients, as well as for pateints with leukemia and lymphoma. Lymphocytes and their subsets show variations with race. The aim of this study was to establish reference ranges for lymphocytes and their subsets in an Saudi adult population by using flow cytometry. Blood samples obtained from 209 healthy Saudi men were used for this study. All blood donors were between 18 and 44 years old. Lymphocytes and their subsets were analyzed by flow cytometry, and the absolute and percentage values were calculated. We investigated the expression of T-cell markers (CD3, CD4, and CD8), B cells (CD19), and natural killer cells (CD16 and CD56). The absolute and percent values of each cell subset were compared with published data from different populations by using the Student t test. Reference ranges, each expressed as the mean ± the standard deviation, were as follows: leukocytes (6,335 ± 1759), total lymphocytes (2,224 ± 717), CD3 cells (1,618 ± 547), CD4 cells (869 ± 310), CD8 cells (615 ± 278), CD19 cells (230 ± 130), and CD3-CD16(+)/CD56+ cells (262 ± 178). The CD4/CD8 ratio was 1.6 ± 0.7. Our results for B cells, CD4 cells, and CD8 cells and for the CD4/CD8 ratio fell in between the reported results for Ethiopian and Dutch subjects. Our results were also different from previously reported findings in an Saudi adult population that showed no increase in CD8 T cells. We thus establish here the reference ranges for lymphocytes and their subsets in a large cohort of Saudi men. The CD8 cell count was not abnormally high, as previously reported, and fell in between previous results obtained for African and European populations

    Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia

    No full text
    We explored the feasibility of collecting convalescent plasma for passive immunotherapy of Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using ELISA to screen serum samples from 443 potential plasma donors: 196 patients with suspected or laboratory-confirmed MERS-CoV infection, 230 healthcare workers, and 17 household contacts exposed to MERS-CoV. ELISA-reactive samples were further tested by indirect fluorescent antibody and microneutralization assays. Of the 443 tested samples, 12 (2.7%) had a reactive ELISA result, and 9 of the 12 had reactive indirect fluorescent antibody and microneutralization assay titers. Undertaking clinical trials of convalescent plasma for passive immunotherapy of MERS-CoV infection may be feasible, but such trials would be challenging because of the small pool of potential donors with sufficiently high antibody titers. Alternative strategies to identify convalescent plasma donors with adequate antibody titers should be explored, including the sampling of serum from patients with more severe disease and sampling at earlier points during illness

    Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol

    No full text
    Abstract As of September 30, 2015, a total of 1589 laboratory-confirmed cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) have been reported to the World Health Organization (WHO). At present there is no effective specific therapy against MERS-CoV. The use of convalescent plasma (CP) has been suggested as a potential therapy based on existing evidence from other viral infections. We aim to study the feasibility of CP therapy as well as its safety and clinical and laboratory effects in critically ill patients with MERS-CoV infection. We will also examine the pharmacokinetics of the MERS-CoV antibody response and viral load over the course of MERS-CoV infection. This study will inform a future randomized controlled trial that will examine the efficacy of CP therapy for MERS-CoV infection. In the CP collection phase, potential donors will be tested by the enzyme linked immunosorbent assay (ELISA) and the indirect fluorescent antibody (IFA) techniques for the presence of anti-MERS-CoV antibodies. Subjects with anti-MERS-CoV IFA titer of ≥1:160 and no clinical or laboratory evidence of MERS-CoV infection will be screened for eligibility for plasma donation according to standard donation criteria. In the CP therapy phase, 20 consecutive critically ill patients admitted to intensive care unit with laboratory-confirmed MERS-CoV infection will be enrolled and each will receive 2 units of CP. Post enrollment, patients will be followed for clinical and laboratory outcomes that include anti-MERS-CoV antibodies and viral load. This protocol was developed collaboratively by King Abdullah International Medical Research Center (KAIMRC), Gulf Cooperation Council (GCC) Infection Control Center Group and the World Health Organization—International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC-WHO) MERS-CoV Working Group. It was approved in June 2014 by the Ministry of the National Guard Health Affairs Institutional Review Board (IRB). A data safety monitoring board (DSMB) was formulated. The study is registered at http://www.clinicaltrials.gov (NCT02190799)

    Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection:a study protocol

    Get PDF
    As of September 30, 2015, a total of 1589 laboratory-confirmed cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) have been reported to the World Health Organization (WHO). At present there is no effective specific therapy against MERS-CoV. The use of convalescent plasma (CP) has been suggested as a potential therapy based on existing evidence from other viral infections. We aim to study the feasibility of CP therapy as well as its safety and clinical and laboratory effects in critically ill patients with MERS-CoV infection. We will also examine the pharmacokinetics of the MERS-CoV antibody response and viral load over the course of MERS-CoV infection. This study will inform a future randomized controlled trial that will examine the efficacy of CP therapy for MERS-CoV infection. In the CP collection phase, potential donors will be tested by the enzyme linked immunosorbent assay (ELISA) and the indirect fluorescent antibody (IFA) techniques for the presence of anti-MERS-CoV antibodies. Subjects with anti-MERS-CoV IFA titer of ≥1:160 and no clinical or laboratory evidence of MERS-CoV infection will be screened for eligibility for plasma donation according to standard donation criteria. In the CP therapy phase, 20 consecutive critically ill patients admitted to intensive care unit with laboratory-confirmed MERS-CoV infection will be enrolled and each will receive 2 units of CP. Post enrollment, patients will be followed for clinical and laboratory outcomes that include anti-MERS-CoV antibodies and viral load. This protocol was developed collaboratively by King Abdullah International Medical Research Center (KAIMRC), Gulf Cooperation Council (GCC) Infection Control Center Group and the World Health Organization—International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC-WHO) MERS-CoV Working Group. It was approved in June 2014 by the Ministry of the National Guard Health Affairs Institutional Review Board (IRB). A data safety monitoring board (DSMB) was formulated. The study is registered at http://www.clinicaltrials.gov (NCT02190799)
    corecore