88 research outputs found

    Use of Accelerometers in a Large Field-Based Study of Children: Protocols, Design Issues, and Effects on Precision

    Get PDF
    Background: Objective methods can improve accuracy of physical activity measurement in field studies but uncertainties remain about their use. Methods: Children age 11 years from the Avon Longitudinal Study of Parents and Children (ALSPAC), were asked to wear a uni-axial accelerometer (MTI Actigraph) for 7 days. Results: Of 7159 children who attended for assessment, 5595 (78%) provided valid measures. The reliability coefficient for 3 days of recording was .7 and the power to detect a difference of 0.07 SDs (P ≤ .05) was \u3e 90%. Measures tended to be higher on the first day of recording (17 counts/min; 95% CI, 10-24) and if children wore the monitor for fewer days, but these differences were small. The children who provided valid measures of activity were different from those who did not, but the differences were modest. Conclusion: Objective measures of physical activity can be incorporated into large longitudinal studies of children

    Physical Activity and Blood Pressure in Childhood: Findings From a Population-Based Study

    Get PDF
    The pathological processes associated with development of cardiovascular disease begin early in life. For example, elevated blood pressure (BP) can be seen in childhood and tracks into adulthood. The relationship between physical activity (PA) and BP in adults is well-established, but findings in children have been inconsistent, with few studies measuring PA mechanically. Children aged 11 to 12 years were recruited from the Avon Longitudinal Study of Parents and Children. 5505 had systolic and diastolic BP measurements, plus valid (at least 10 hours for at least 3 days) accelerometer measures of PA; total PA recorded as average counts per minute (cpm) over the period of valid recording, and minutes per day spent in moderate to vigorous PA (MVPA). Data on a number of possible confounders were also available. Small inverse associations were observed; for systolic BP, β = -0.44 (95% confidence interval -0.59, -0.28) mm Hg per 100 cpm, and β = -0.66 (95% CI -0.92, -0.39) mm Hg per 15 minutes/d MVPA, adjusting for child\u27s age and gender. After adjustment for potential confounders, associations were weakened but remained. When PA variables were modeled together, associations with total PA were only a little weaker, whereas those with MVPA were substantially reduced; for systolic BP, β = -0.42 (95% CI -0.71, -0.13) mm Hg per 100 cpm, and β = -0.03 (95% CI -0.54, 0.48) mm Hg per 15 minutes/d MVPA. In conclusion, higher levels of PA were associated with lower BP, and results suggested that the volume of activity may be more important than the intensity

    Development of an automated DNA purification module using a micro-fabricated pillar chip

    Full text link
    We present a fully automated DNA purification module comprised of a micro-fabricated chip and sequential injection analysis system that is designed for use within autonomous instruments that continuously monitor the environment for the presence of biological threat agents. The chip has an elliptical flow channel containing a bed (3.5 &times; 3.5 mm) of silica-coated pillars with height, width and center-to-center spacing of 200, 15, and 30 &micro;m, respectively, which provides a relatively large surface area (ca. 3 cm2) for DNA capture in the presence of chaotropic agents. We have characterized the effect of various fluidic parameters on extraction performance, including sample input volume, capture flow rate, and elution volume. The flow-through design made the pillar chip completely reusable; carryover was eliminated by flushing lines with sodium hypochlorite and deionized water between assays. A mass balance was conducted to determine the fate of input DNA not recovered in the eluent. The device was capable of purifying and recovering Bacillus anthracis genomic DNA (input masses from 0.32 to 320 pg) from spiked environmental aerosol samples, for subsequent analysis using polymerase chain reaction-based assays.<br /

    Electron swarm transport in THF and water mixtures

    Full text link
    The transport coefficients of electrons in mixtures of gaseous water and tetrahydrofuran (THF) are calculated using a multi-term solution of the Boltzmann equation. Electron transport coefficients at room temperature are presented over a range of reduced electric fields from 0.1–1000 Td, with significant differences between the behaviour in pure water and pure THF being found. The influence of the water to THF mixture ratio on the calculated transport coefficients is also presented

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey

    Full text link
    APOGEE-2 is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemo-dynamical mapping of the Milky Way Galaxy. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) "Ancillary Science Programs" competitively awarded to SDSS-IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5-year expansion of the survey, known as the Bright Time Extension, made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The Bright Time Extension permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new datasets not available at the outset of the survey design, and expansions of existing programs to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, Santana et al. (submitted), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere.Comment: 59 pages; 11 Figures; 7 Tables; 2 Appendices; Submitted to Journal and Under Review; Posting to accompany papers using the SDSS-IV/APOGEE-2 Data Release 17 scheduled for December 202

    The GALAH+ Survey : Third Data Release

    Get PDF
    © 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab1242The ensemble of chemical element abundance measurements for stars, along with precision distances and orbit properties, provides high-dimensional data to study the evolution of the Milky Way. With this third data release of the Galactic Archaeology with HERMES (GALAH) survey, we publish 678 423 spectra for 588 571 mostly nearby stars (81.2% of stars are within 75 stellar clusters. We derive stellar parameters TeffT_\text{eff}, logg\log g, [Fe/H], vmicv_\text{mic}, vbroadv_\text{broad} & vradv_\text{rad} using our modified version of the spectrum synthesis code Spectroscopy Made Easy (SME) and 1D MARCS model atmospheres. We break spectroscopic degeneracies in our spectrum analysis with astrometry from GaiaGaia DR2 and photometry from 2MASS. We report abundance ratios [X/Fe] for 30 different elements (11 of which are based on non-LTE computations) covering five nucleosynthetic pathways. We describe validations for accuracy and precision, flagging of peculiar stars/measurements and recommendations for using our results. Our catalogue comprises 65% dwarfs, 34% giants, and 1% other/unclassified stars. Based on unflagged chemical composition and age, we find 62% young low-α\alpha, 9% young high-α\alpha, 27% old high-α\alpha, and 2% stars with [Fe/H]1\mathrm{[Fe/H]} \leq -1. Based on kinematics, 4% are halo stars. Several Value-Added-Catalogues, including stellar ages and dynamics, updated after GaiaGaia eDR3, accompany this release and allow chrono-chemodynamic analyses, as we showcase.Peer reviewe

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V
    corecore