144 research outputs found

    Burst versus continuous delivery design in digital mental health interventions: Evidence from a randomized clinical trial

    Get PDF
    Objective Digital mental health interventions delivered via smartphone-based apps effectively treat various conditions; however, optimizing their efficacy while minimizing participant burden remains a key challenge. In this study, we investigated the potential benefits of a burst delivery design (i.e. interventions delivered only in pre-defined time intervals) in comparison to the continuous delivery of interventions. Methods We randomly assigned 93 participants to the continuous delivery (CD) or burst delivery (BD) group. The CD group engaged in ReApp, a mobile app that increases positive cognitive reappraisal with a consistent delivery schedule that provides five prompts per day throughout the 3-week-long study, while the BD group received five daily prompts only in the first and third weeks of the study. Results No significant differences were found between the groups in terms of adherence, mental health outcomes (specifically depressive and anxiety symptoms), level of perceived stress, and perceived helpfulness of intervention. The BD group showed a significantly decreased perceived difficulty of intervention over time. Conclusions The results suggest that the burst delivery may be as suitable for digital mental health interventions as the continuous delivery. The perceived difficulty of the intervention declined more steeply for the BD group, indicating that it improved the feasibility of the positive cognitive reappraisal intervention without hurting its efficacy. This outcome may inform the design of less burdensome interventions with improved outcomes in future research

    Dynamic Modelling of Mental Resilience in Young Adults: Protocol for a Longitudinal Observational Study (DynaM-OBS)

    Get PDF
    Background Stress-related mental disorders are highly prevalent and pose a substantial burden on individuals and society. Improving strategies for the prevention and treatment of mental disorders requires a better understanding of their risk and resilience factors. This multicenter study aims to contribute to this endeavor by investigating psychological resilience in healthy but susceptible young adults over 9 months. Resilience is conceptualized in this study as the maintenance of mental health or quick recovery from mental health perturbations upon exposure to stressors, assessed longitudinally via frequent monitoring of stressors and mental health. Objective This study aims to investigate the factors predicting mental resilience and adaptive processes and mechanisms contributing to mental resilience and to provide a methodological and evidence-based framework for later intervention studies. Methods In a multicenter setting, across 5 research sites, a sample with a total target size of 250 young male and female adults was assessed longitudinally over 9 months. Participants were included if they reported at least 3 past stressful life events and an elevated level of (internalizing) mental health problems but were not presently affected by any mental disorder other than mild depression. At baseline, sociodemographic, psychological, neuropsychological, structural, and functional brain imaging; salivary cortisol and α-amylase levels; and cardiovascular data were acquired. In a 6-month longitudinal phase 1, stressor exposure, mental health problems, and perceived positive appraisal were monitored biweekly in a web-based environment, while ecological momentary assessments and ecological physiological assessments took place once per month for 1 week, using mobile phones and wristbands. In a subsequent 3-month longitudinal phase 2, web-based monitoring was reduced to once a month, and psychological resilience and risk factors were assessed again at the end of the 9-month period. In addition, samples for genetic, epigenetic, and microbiome analyses were collected at baseline and at months 3 and 6. As an approximation of resilience, an individual stressor reactivity score will be calculated. Using regularized regression methods, network modeling, ordinary differential equations, landmarking methods, and neural net–based methods for imputation and dimension reduction, we will identify the predictors and mechanisms of stressor reactivity and thus be able to identify resilience factors and mechanisms that facilitate adaptation to stressors. Results Participant inclusion began in October 2020, and data acquisition was completed in June 2022. A total of 249 participants were assessed at baseline, 209 finished longitudinal phase 1, and 153 finished longitudinal phase 2. Conclusions The Dynamic Modelling of Resilience–Observational Study provides a methodological framework and data set to identify predictors and mechanisms of mental resilience, which are intended to serve as an empirical foundation for future intervention studies. International Registered Report Identifier (IRRID) DERR1-10.2196/3981

    Impact of genetic loci identified in genome-wide association studies on diabetic retinopathy in Chinese patients with type 2 diabetes

    Get PDF
    © 2016, Association for Research in Vision and Ophthalmology Inc. All rights reserved.PURPOSE. Diabetic retinopathy (DR) is a common microvascular complication of type 2 diabetes (T2DM). Genome-wide association studies (GWAS) had identified novel DRsusceptibility genetic variants in various populations. We examined the associations of these DR-associated single nucleotide polymorphisms (SNPs) with severe DR in a Chinese T2DM cohort. METHODS. Cross-sectional case-control studies on sight-threatening DR (STDR) and proliferative DR (PDR) were performed. We genotyped 38 SNPs showing top association signals with DR in previous GWAS in 567 STDR cases, including 309 with PDR and 1490 non-DR controls. Multiple logistic regression models with adjustment for conventional risk factors, including age, sex, duration of diabetes, and presence of hypertension, were employed. RESULTS. The strongest association was found at INSR rs2115386, an intronic SNP of INSR: Padjusted = 9.13 × 10-4 (odds ratio [OR],1.28; 95% confidence interval [95%CI], 1.11-1.48) for STDR, and Padjusted = 1.12 × 10-4 (OR [95%CI],1.44 [1.20-1.74]) for PDR. rs599019 located downstream of COLEC12 (Padjusted = 0.019; OR [95%CI],1.19 [1.03-1.38]) and rs4462262 located at an intergenic region between ZWINT and MRPS35P3 (Padjusted = 0.041; OR [95%CI],1.38[1.01-1.89]) also were significantly associated with STDR, but not with PDR alone. On the other hand, MYT1L-LOC729897 rs10199521 (Padjusted = 0.022; OR [95%CI],1.25 [1.03-1.51]) and API5 rs899036 (Padjusted = 0.049; OR [95%CI],1.36 [1.00-1.85]) showed significant independent associations only with PDR. Similar results were obtained when hemoglobin A1c also was included in the adjustment models. CONCLUSIONS. We demonstrated the significant and independent associations of several GWAS-identified SNPs with DR in Chinese T2DM patients with severe DR. The findings on INSR rs2115386 are supportive of the role of insulin resistance, or the compensatory hyperinsulinemia, in the pathogenesis of DR.Link_to_subscribed_fulltex

    Fine Mapping of the NRG1 Hirschsprung's Disease Locus

    Get PDF
    The primary pathology of Hirschsprung's disease (HSCR, colon aganglionosis) is the absence of ganglia in variable lengths of the hindgut, resulting in functional obstruction. HSCR is attributed to a failure of migration of the enteric ganglion precursors along the developing gut. RET is a key regulator of the development of the enteric nervous system (ENS) and the major HSCR-causing gene. Yet the reduced penetrance of RET DNA HSCR-associated variants together with the phenotypic variability suggest the involvement of additional genes in the disease. Through a genome-wide association study, we uncovered a ∼350 kb HSCR-associated region encompassing part of the neuregulin-1 gene (NRG1). To identify the causal NRG1 variants contributing to HSCR, we genotyped 243 SNPs variants on 343 ethnic Chinese HSCR patients and 359 controls. Genotype analysis coupled with imputation narrowed down the HSCR-associated region to 21 kb, with four of the most associated SNPs (rs10088313, rs10094655, rs4624987, and rs3884552) mapping to the NRG1 promoter. We investigated whether there was correlation between the genotype at the rs10088313 locus and the amount of NRG1 expressed in human gut tissues (40 patients and 21 controls) and found differences in expression as a function of genotype. We also found significant differences in NRG1 expression levels between diseased and control individuals bearing the same rs10088313 risk genotype. This indicates that the effects of NRG1 common variants are likely to depend on other alleles or epigenetic factors present in the patients and would account for the variability in the genetic predisposition to HSCR

    Measurement of the inclusive isolated-photon cross section in pp collisions at √s = 13 TeV using 36 fb−1 of ATLAS data

    Get PDF
    The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties. [Figure not available: see fulltext.

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers

    Get PDF
    The risk of germline copy number variants (CNVs) in BRCA1 and BRCA2 pathogenic variant carriers in breast cancer is assessed, with CNVs overlapping SULT1A1 decreasing breast cancer risk in BRCA1 carriers.The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.Peer reviewe

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore