85 research outputs found

    Child abuse inventory at emergency rooms: CHAIN-ER rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Child abuse and neglect is an important international health problem with unacceptable levels of morbidity and mortality. Although maltreatment as a cause of injury is estimated to be only 1% or less of the injured children attending the emergency room, the consequences of both missed child abuse cases and wrong suspicions are substantial. Therefore, the accuracy of ongoing detection at emergency rooms by health care professionals is highly important. Internationally, several diagnostic instruments or strategies for child abuse detection are used at emergency rooms, but their diagnostic value is still unknown. The aim of the study 'Child Abuse Inventory at Emergency Rooms' (CHAIN-ER) is to assess if active structured inquiry by emergency room staff can accurately detect physical maltreatment in children presenting at emergency rooms with physical injury.</p> <p>Methods/design</p> <p>CHAIN-ER is a multi-centre, cross-sectional study with 6 months diagnostic follow-up. Five thousand children aged 0-7 presenting with injury at an emergency room will be included. The index test - the SPUTOVAMO-R questionnaire- is to be tested for its diagnostic value against the decision of an expert panel. All SPUTOVAMO-R positives and a 15% random sample of the SPUTOVAMO-R negatives will undergo the same systematic diagnostic work up, which consists of an adequate history being taken by a pediatrician, inquiry with other health care providers by structured questionnaires in order to obtain child abuse predictors, and by additional follow-up information. Eventually, an expert panel (reference test) determines the <it>true </it>presence or absence of child abuse.</p> <p>Discussion</p> <p>CHAIN-ER will determine both positive and negative predictive value of a child abuse detection instrument used in the emergency room. We mention a benefit of the use of an expert panel and of the use of complete data. Conducting a diagnostic accuracy study on a child abuse detection instrument is also accompanied by scientific hurdles, such as the lack of an accepted reference standard and potential (non-) response. Notwithstanding these scientific challenges, CHAIN-ER will provide accurate data on the predictive value of SPUTOVAMO-R.</p

    Quantitative Analysis of Mechanisms That Govern Red Blood Cell Age Structure and Dynamics during Anaemia

    Get PDF
    Mathematical modelling has proven an important tool in elucidating and quantifying mechanisms that govern the age structure and population dynamics of red blood cells (RBCs). Here we synthesise ideas from previous experimental data and the mathematical modelling literature with new data in order to test hypotheses and generate new predictions about these mechanisms. The result is a set of competing hypotheses about three intrinsic mechanisms: the feedback from circulating RBC concentration to production rate of immature RBCs (reticulocytes) in bone marrow, the release of reticulocytes from bone marrow into the circulation, and their subsequent ageing and clearance. In addition we examine two mechanisms specific to our experimental system: the effect of phenylhydrazine (PHZ) and blood sampling on RBC dynamics. We performed a set of experiments to quantify the dynamics of reticulocyte proportion, RBC concentration, and erythropoietin concentration in PHZ-induced anaemic mice. By quantifying experimental error we are able to fit and assess each hypothesis against our data and recover parameter estimates using Markov chain Monte Carlo based Bayesian inference. We find that, under normal conditions, about 3% of reticulocytes are released early from bone marrow and upon maturation all cells are released immediately. In the circulation, RBCs undergo random clearance but have a maximum lifespan of about 50 days. Under anaemic conditions reticulocyte production rate is linearly correlated with the difference between normal and anaemic RBC concentrations, and their release rate is exponentially correlated with the same. PHZ appears to age rather than kill RBCs, and younger RBCs are affected more than older RBCs. Blood sampling caused short aperiodic spikes in the proportion of reticulocytes which appear to have a different developmental pathway than normal reticulocytes. We also provide evidence of large diurnal oscillations in serum erythropoietin levels during anaemia

    Development and Validation of an Epitope Prediction Tool for Swine (PigMatrix) Based on the Pocket Profile Method

    Get PDF
    Background: T cell epitope prediction tools and associated vaccine design algorithms have accelerated the development of vaccines for humans. Predictive tools for swine and other food animals are not as well developed, primarily because the data required to develop the tools are lacking. Here, we overcome a lack of T cell epitope data to construct swine epitope predictors by systematically leveraging available human information. Applying the “pocket profile method”, we use sequence and structural similarities in the binding pockets of human and swine major histocompatibility complex proteins to infer Swine Leukocyte Antigen (SLA) peptide binding preferences. We developed epitope-prediction matrices (PigMatrices), for three SLA class I alleles (SLA-1*0401, 2*0401 and 3*0401) and one class II allele (SLA-DRB1*0201), based on the binding preferences of the best-matched Human Leukocyte Antigen (HLA) pocket for each SLA pocket. The contact residues involved in the binding pockets were defined for class I based on crystal structures of either SLA (SLA-specific contacts, Ssc) or HLA supertype alleles (HLA contacts, Hc); for class II, only Hc was possible. Different substitution matrices were evaluated (PAM and BLOSUM) for scoring pocket similarity and identifying the best human match. The accuracy of the PigMatrices was compared to available online swine epitope prediction tools such as PickPocket and NetMHCpan. Results: PigMatrices that used Ssc to define the pocket sequences and PAM30 to score pocket similarity demonstrated the best predictive performance and were able to accurately separate binders from random peptides. For SLA-1*0401 and 2*0401, PigMatrix achieved area under the receiver operating characteristic curves (AUC) of 0.78 and 0.73, respectively, which were equivalent or better than PickPocket (0.76 and 0.54) and NetMHCpan version 2.4 (0.41 and 0.51) and version 2.8 (0.72 and 0.71). In addition, we developed the first predictive SLA class II matrix, obtaining an AUC of 0.73 for existing SLA-DRB1*0201 epitopes. Notably, PigMatrix achieved this level of predictive power without training on SLA binding data. Conclusions: Overall, the pocket profile method combined with binding preferences from HLA binding data shows significant promise for developing T cell epitope prediction tools for pigs. When combined with existing vaccine design algorithms, PigMatrix will be useful for developing genome-derived vaccines for a range of pig pathogens for which no effective vaccines currently exist (e.g. porcine reproductive and respiratory syndrome, influenza and porcine epidemic diarrhea)

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Observation of the diphoton decay of the Higgs boson and measurement of its properties

    Get PDF
    Peer reviewe

    Measurement of top quark–antiquark pair production in association with a W or Z boson in pp collisions at √s=8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe
    • 

    corecore