15 research outputs found

    Lack of increases in methylation at three CpG-rich genomic loci in non-mitotic adult tissues during aging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell division occurs during normal human development and aging. Despite the likely importance of cell division to human pathology, it has been difficult to infer somatic cell mitotic ages (total numbers of divisions since the zygote) because direct counting of lifetime numbers of divisions is currently impractical. Here we attempt to infer relative mitotic ages with a molecular clock hypothesis. Somatic genomes may record their mitotic ages because greater numbers of replication errors should accumulate after greater numbers of divisions. Mitotic ages will vary between cell types if they divide at different times and rates.</p> <p>Methods</p> <p>Age-related increases in DNA methylation at specific CpG sites (termed "epigenetic molecular clocks") have been previously observed in mitotic human epithelium like the intestines and endometrium. These CpG rich sequences or "tags" start unmethylated and potentially changes in methylation during development and aging represent replication errors. To help distinguish between mitotic versus time-associated changes, DNA methylation tag patterns at 8–20 CpGs within three different genes, two on autosomes and one on the X-chromosome were measured by bisulfite sequencing from heart, brain, kidney and liver of autopsies from 21 individuals of different ages.</p> <p>Results</p> <p>Levels of DNA methylation were significantly greater in adult compared to fetal or newborn tissues for two of the three examined tags. Consistent with the relative absence of cell division in these adult tissues, there were no significant increases in tag methylation after infancy.</p> <p>Conclusion</p> <p>Many somatic methylation changes at certain CpG rich regions or tags appear to represent replication errors because this methylation increases with chronological age in mitotic epithelium but not in non-mitotic organs. Tag methylation accumulates differently in different tissues, consistent with their expected genealogies and mitotic ages. Although further studies are necessary, these results suggest numbers of divisions and ancestry are at least partially recorded by epigenetic replication errors within somatic cell genomes.</p

    Practice Inquiry: Clinical Uncertainty as a Focus for Small-Group Learning and Practice Improvement

    Get PDF
    PROBLEM: Many primary care physicians in nonacademic settings lack a collegial forum for engaging the clinical uncertainties inherent in their work. PROGRAM DESCRIPTION: “Practice Inquiry” is proposed as a set of small-group, practice-based learning and improvement (PBLI) methods designed to help clinicians better manage case-based clinical uncertainty. Clinicians meet regularly at their offices/clinics to present dilemma cases, share clinical experience, review evidence for blending with experience, and draw implications for practice improvement. From 2001 through 2005, Practice Inquiry was introduced to sites in the San Francisco Bay Area as a demonstration effort. Meeting rosters, case logs, a feedback survey, and meeting field notes documented implementation and provided data for a formative, qualitative evaluation. PROGRAM EVALUATION: Of the 30 sites approached, 14 held introductory meetings. As of summer 2006, 98 clinicians in 11 sites continue to hold regularly scheduled group meetings. Of the 118 patient cases presented in the seven oldest groups, clinician–patient relationship and treatment dilemmas were most common. Clinician feedback and meeting transcript data provided insights into how busy practitioners shared cases, developed trust, and learned new knowledge/skills for moving forward with patients. DISCUSSION: Ongoing clinician involvement suggests that Practice Inquiry is a feasible, acceptable, and potentially useful set of PBLI methods. Two of the Practice Inquiry’s group learning tasks received comparatively less focus: integrating research evidence with clinical experience and tracking dilemma case outcomes. Future work should focus on reducing the methodological limitations of a demonstration effort and examining factors affecting clinician participation. Set-aside work time for clinicians, or other equally potent incentives, will be necessary for the further elaboration of these PBLI methods aimed at managing uncertainty

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Multiple reproductive barriers separate recently diverged sunflower ecotypes

    No full text
    Measuring reproductive barriers between groups of organisms is an effective way to determine the traits and mechanisms that impede gene flow. However, to understand the ecological and evolutionary factors that drive speciation, it is important to distinguish between the barriers that arise early in the speciation process and those that arise after speciation is largely complete. In this article, we comprehensively test for reproductive isolation between recently diverged

    Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers

    No full text
    In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of Phyb range from 10-4 to 10-6 depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (Nem= 0.340.76) are mainly due to their large effective population sizes (Ne > 106). The interspecific migration rate (m) is very small (0.999) may produce genomic mosaics

    The genetics and ecology of reinforcement: Implications for the evolution of prezygotic isolation in sympatry and beyond

    No full text
    Reinforcement, the evolution of prezygotic reproductive barriers by natural selection in response to maladaptive hybridization, is one of the most debated processes in speciation. Critics point to "fatal" conceptual flaws for sympatric evolution of prezygotic isolation, but recent theoretical and empirical work on genetics and ecology of reinforcement suggests that such criticisms can be overcome. New studies provide evidence for reinforcement in frogs, fish, insects, birds, and plants. While such evidence lays to rest the argument over reinforcement's existence, our understanding remains incomplete. We lack data on (1) the genetic basis of female preferences and the links between genetics of pre- and postzygotic isolation, (2) the ecological basis of reproductive isolation, (3) connections between prezygotic isolation between species and within-species sexual selection (potentially leading to a "cascade" of effects on reproductive isolation), (4) the role of habitat versus mate preference in reinforcement, and (5) additional detailed comparative studies. Here, we review data on these issues and highlight why they are important for understanding speciation

    Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    Get PDF
    <p>Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a metaanalysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P= 2.1 x 10(-12) and LGR6, P = 1.4 x 10(-8)), 2p24.1 (P = 4.6 x 10(-8)) and 16q12.2 (FTO, P = 4.0 x 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P> 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.</p>
    corecore