67 research outputs found
Activation technique of astrophysical photonuclear reaction rate measurements using bremsstrahlung
Astrophysical simulation of natural abundance of p-nuclei needs knowledge of the enormous quality of photonuclear reaction rates which can be derived from the reaction integral yields. The applicability of the activation technique for getting relevant experimental information is shown by the examples of the (γ; n)-reactions running in the ⁹⁶Ru and ⁹⁸Ru p-nuclei the measurements of the integral yields of which have been performed using bremsstrahlung of the Kharkiv electron linear accelerator. The obtained data are compared to the statistical theory of nuclear reactions.Астрофизическое моделирование природной распространенности так называемых p-изотопов требует сведений о скоростях низкоэнергетичных (припороговых) фотоядерных реакций на огромном числе атомных ядер. На примере (γ; n)-реакций, вызываемых фотонами в ядрах p-изотопов ⁹⁶Ru и ⁹⁸Ru , продемонстрирована возможность получения соответствующей экспериментальной информации на пучке тормозного излучения харьковского линейного ускорителя электронов путем измерения интегральных выходов реакций. Полученные результаты сравниваются с предсказаниями статистической теории ядерных реакций.Астрофiзичне моделювання природної розповсюдженостi так званих p-iзотопiв потребує знань швидкостей низькоенергетичних (припорогових) фотоядерних реакцiй на величезнiй кiлькостi атомних ядер. На прикладi (γ; n)-реакцiй, спричиняємих гальмiвним випромiнюванням харкiвського лiнiйного прискорювача електронiв в ядрах p-iзотопiв ⁹⁶Ru та ⁹⁸Ru , продемонстровано можливiсть отримання вiдповiдної експериментальної iнформацiї шляхом вимiрювання iнтегральних виходiв реакцiй. Отриманi результати порiвнюються з передбаченнями статистичної теорiї ядерних реакцiй
Recommended from our members
Stochastic Transport Modeling of Resonant Magnetic Perturbations in DIII-D
Three-dimensional two-fluid simulations of heat transport due to resonant magnetic perturbations of tokamaks have been computed by coupling the TRIP3D field line tracing code to the E3D edge transport code. The predicted electron temperature contours follow the new separatrix represented by the perturbed invariant manifold structure of the X-point in qualitative agreement with X-point TV observations. However, preliminary modeling predicts that the resulting stochastic heat transport is greater than that measured in low-collisionality ELM suppression experiments in DIII-D H-mode plasmas. While improved determination of transport coefficients is definitely required, possible explanations include plasma screening of resonant perturbations, invalid treatment of the edge as a fluid, or insufficient understanding of stochastic heat transport
THERMAL AND EPITHERMAL NEUTRON GENERATION FOR NUCLEAR MEDICINE USING ELECTRON LINEAR ACCELERATOR
In this paper, to obtain streams of thermal and epithermal neutrons are used delayed neutrons emitted from the target with a fissile material. The target preliminarily activated with help of electron beam from linear accelerator with an energy of 20 MeV and a power of 9 Watts. At the same time to obtain a stream of thermal as well as epithermal neutron density 6 10^-5 n / (cm^2 s) The results of experiment are presented where half-decay curves have been measured of emitting delayed neutrons radioactive nuclei produced in the fission process. It has been shown that the activated target, which contains the fissile material, presents a compact small size source of delayed neutrons. It can be delivered to the formator where thermal and epithermal neutrons are formed during a certain time period with help of the moderator, absorber and collimator. Then this target is moved to the activator being replaced with another target. Thus, pulsed neutron flux is produced. The duration of neutron pulse corresponds to the presence time of the activated target in the formator, and time interval between pulses is determined by the delivery time of the target from the activator to the formator. Given that the yield of neutrons from the target is directly proportional to the power of the beam of accelerated electrons, shows that the beam power of 1.5 - 3 kW, the flux density of thermal and epithermal neutrons can reach the values of (2-3) 10^9 n / (cm^2 s). Such a neutron beam can be used in nuclear medicine, in particular, in neutron capture therapy of oncologic diseases
Calculation of the bootstrap current profile for the TJ-II stellarator
Calculations of the bootstrap current for the TJ-II stellarator are
presented. DKES and NEO-MC codes are employed; the latter has allowed, for the
first time, the precise computation of the bootstrap transport coefficient in
the long mean free path regime of this device. The low error bars allow a
precise convolution of the monoenergetic coefficients, which is confirmed by
error analysis. The radial profile of the bootstrap current is presented for
the first time for the 100_44_64 configuration of TJ-II for three different
collisionality regimes. The bootstrap coefficient is then compared to that of
other configurations of TJ-II regularly operated. The results show qualitative
agreement with toroidal current measurements; precise comparison with real
discharges is ongoing
Study of the neoclassical radial electric field of the TJ-II flexible heliac
Calculations of the monoenergetic radial diffusion coefficients are presented
for several configurations of the TJ-II stellarator usually explored in
operation. The neoclassical radial fluxes and the ambipolar electric field for
the standard configuration are then studied for three different collisionality
regimes, obtaining precise results in all cases
Real-time plasma state monitoring and supervisory control on TCV
In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation
Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes
Overview of ASDEX upgrade results in view of ITER and DEMO
Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance
- …