20 research outputs found

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    A discretized model for enzymatic hydrolysis of cellulose in a fed-batch process

    No full text
    Abstract In the enzymatic hydrolysis of cellulose, several phenomena have been proposed to cause a decrease in the reaction rate with increasing conversion. The importance of each phenomenon is difficult to distinguish from batch hydrolysis data. Thus, kinetic models for the enzymatic hydrolysis of cellulose often suffer from poor parameter identifiability. This work presents a model that is applicable to fed-batch hydrolysis by discretizing the substrate based on the feeding time. Different scenarios are tested to explain the observed decrease in reaction rate with increasing conversion, and comprehensive assessment of the parameter sensitivities is carried out. The proposed model performed well in the broad range of experimental conditions used in this study and when compared to literature data. Furthermore, the use of data from fed-batch experiments and discretization of the model substrate to populations was found to be very informative when assessing the importance of the rate-decreasing phenomena in the model

    Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite

    No full text
    Abstract In the present study, the adsorption of sulfates of sodium sulfate (Na₂SO₄) and sodium lauryl sulfate (SLS) by calcium hydroxyapatite-modified microfibrillated cellulose was studied in the aqueous solution. The adsorbent was characterized using elemental analysis, Fourier transform infrared, scanning electron microscope and elemental analysis in order to gain the information on its structure and physico-chemical properties. The adsorption studies were conducted in batch mode. The effects of solution pH, contact time, the initial concentration of sulfate and the effect of competing anions were studied on the performance of synthesized adsorbent for sulfate removal. Adsorption kinetics indicated very fast adsorption rate for sulfate of both sources (Na₂SO₄ and SLS) and the adsorption process was well described by the pseudo-second-order kinetic model. Experimental maximum adsorption capacities were found to be 34.53 mg g⁻¹ for sulfates of SLS and 7.35 mg g⁻¹ for sulfates of Na₂SO₄. The equilibrium data were described by the Langmuir, Sips, Freundlich, Toth and Redlich–Peterson isotherm models using five different error functions

    Waist circumference and waist-to-height ratio are associated with periodontal pocketing:results of the Health 2000 Survey

    No full text
    Abstract Background: Body mass index (BMI) has been found to associate with different parameters of chronic periodontal disease in previous studies. It is reasonable to expect that central adiposity measures, such as waist circumference and waist-to-height ratio, which indirectly takes into account visceral fat, are more accurate measures of obesity-related oral health risks than BMI. The aim of this study was to examine whether central obesity is associated with periodontal pocketing, an indication of infectious chronic periodontal disease. Methods: The study was based on a subpopulation from the national Health 2000 Survey in Finland. It included dentate, non-diabetic, never-smoking subjects aged 30–49 (n = 1287). The outcome variable was the number of teeth with deepened periodontal pockets (4 mm or more) and the number of teeth with deep periodontal pockets (6 mm or more). Central obesity was measured by means of waist circumference (WC) and waist-to-height ratio (WHtR). Poisson regression models were used to estimate prevalence rate ratios (PRR) and their 95% confidence intervals. Results: Our main finding was that both WC and WHtR were associated with the number of teeth with deeper (4 mm or more) periodontal pockets; the PRR for the fifth quintile in WC was 1.5, CI: 1.2–1.9 and in WHtR 1.4, CI: 1.1–1.7, when compared to the lowest quintile. Corresponding figures for deep (6 mm or more) periodontal pockets were 2.3, CI: 0.9–6.1 for WC and 1.9, CI: 0.8–4.4 for WHtR. There were no essential differences in the strengths of the associations between WC and WHtR and the number of teeth with deepened periodontal pockets. Conclusion: Both central adipose measures—WC and WHtR—seem to be associated with periodontal pocketing in non-diabetic, never-smoking subjects aged 30–49 years old

    Impaired HDL2-mediated cholesterol efflux is associated with metabolic syndrome in families with early onset coronary heart disease and low HDL-cholesterol level

    No full text
    Abstract Objective: The potential of high-density lipoproteins (HDL) to facilitate cholesterol removal from arterial foam cells is a key function of HDL. We studied whether cholesterol efflux to serum and HDL subfractions is impaired in subjects with early coronary heart disease (CHD) or metabolic syndrome (MetS) in families where a low HDL-cholesterol level (HDL-C) predisposes to early CHD. Methods: HDL subfractions were isolated from plasma by sequential ultracentrifugation. THP-1 macrophages loaded with acetyl-LDL were used in the assay of cholesterol efflux to total HDL, HDL2, HDL3 or serum. Results: While cholesterol efflux to serum, total HDL and HDL3 was unchanged, the efflux to HDL2 was 14% lower in subjects with MetS than in subjects without MetS (p&lt;0.001). The efflux to HDL2 was associated with components of MetS such as plasma HDL-C (r = 0.76 in men and r = 0.56 in women, p&lt;0.001 for both). The efflux to HDL2 was reduced in men with early CHD (p&lt;0.01) only in conjunction with their low HDL-C. The phospholipid content of HDL2 particles was a major correlate with the efflux to HDL2 (r = 0.70, p&lt;0.001). A low ratio of HDL2 to total HDL was associated with MetS (p&lt;0.001). Conclusion: Our results indicate that impaired efflux to HDL2 is a functional feature of the low HDL-C state and MetS in families where these risk factors predispose to early CHD. The efflux to HDL2 related to the phospholipid content of HDL2 particles but the phospholipid content did not account for the impaired efflux in cardiometabolic disease, where a combination of low level and poor quality of HDL2 was observed

    Metabolic profiles help discriminate mild cognitive impairment from dementia stage in Alzheimer’s disease

    Get PDF
    Abstract Accurate differentiation between neurodegenerative diseases is developing quickly and has reached an effective level in disease recognition. However, there has been less focus on effectively distinguishing the prodromal state from later dementia stages due to a lack of suitable biomarkers. We utilized the Disease State Index (DSI) machine learning classifier to see how well quantified metabolomics data compares to clinically used cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD). The metabolic profiles were quantified for 498 serum and CSF samples using proton nuclear magnetic resonance spectroscopy. The patient cohorts in this study were dementia (with a clinical AD diagnosis) (N = 359), mild cognitive impairment (MCI) (N = 96), and control patients with subjective memory complaints (N = 43). DSI classification was conducted for MCI (N = 51) and dementia (N = 214) patients with low CSF amyloid-β levels indicating AD pathology and controls without such amyloid pathology (N = 36). We saw that the conventional CSF markers of AD were better at classifying controls from both dementia and MCI patients. However, quantified metabolic subclasses were more effective in classifying MCI from dementia. Our results show the consistent effectiveness of traditional CSF biomarkers in AD diagnostics. However, these markers are relatively ineffective in differentiating between MCI and the dementia stage, where the quantified metabolomics data provided significant benefit

    Low serum high-density lipoprotein cholesterol levels associate with the C9orf72 repeat expansion in frontotemporal lobar degeneration patients

    No full text
    Abstract Decreased levels of serum high-density lipoprotein (HDL) cholesterol have previously been linked to systemic inflammation and neurodegenerative diseases, such as Alzheimer’s disease. Here, we aimed to analyze the lipoprotein profile and inflammatory indicators, the high-sensitivity C-reactive peptide (hs-CRP) and glycoprotein acetyls (GlycA), in sporadic and C9orf72 repeat expansion-associated frontotemporal lobar degeneration (FTLD) patients. The C9orf72 hexanucleotide repeat expansion is the most frequent genetic etiology underlying FTLD. The concentrations of different lipid measures in the sera of 67 FTLD patients (15 C9orf72 repeat expansion carriers), including GlycA, were analyzed by nuclear magnetic resonance spectroscopy. To verify the state of systemic inflammation, hs-CRP was also quantified from patient sera. We found that the total serum HDL concentration was decreased in C9orf72 repeat expansion carriers when compared to non-carriers. Moreover, decreased concentrations of HDL particles of different sizes and subclass were consistently observed. No differences were detected in the very low- and low-density lipoprotein subclasses between the C9orf72 repeat expansion carriers and non-carriers. Furthermore, hs-CRP and GlycA levels did not differ between the C9orf72 repeat expansion carriers and non-carriers. In conclusion, the HDL-related changes were linked with C9orf72 repeat expansion associated FTLD but were not seen to associate with systemic inflammation. The underlying reason for the HDL changes remains unclear
    corecore