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Abstract. Accurate differentiation between neurodegenerative diseases is developing quickly and has reached an effective
level in disease recognition. However, there has been less focus on effectively distinguishing the prodromal state from later
dementia stages due to a lack of suitable biomarkers. We utilized the Disease State Index (DSI) machine learning classifier to
see how well quantified metabolomics data compares to clinically used cerebrospinal fluid (CSF) biomarkers of Alzheimer’s
disease (AD). The metabolic profiles were quantified for 498 serum and CSF samples using proton nuclear magnetic
resonance spectroscopy. The patient cohorts in this study were dementia (with a clinical AD diagnosis) (N = 359), mild
cognitive impairment (MCI) (N = 96), and control patients with subjective memory complaints (N = 43). DSI classification
was conducted for MCI (N = 51) and dementia (N = 214) patients with low CSF amyloid-� levels indicating AD pathology
and controls without such amyloid pathology (N = 36). We saw that the conventional CSF markers of AD were better at
classifying controls from both dementia and MCI patients. However, quantified metabolic subclasses were more effective
in classifying MCI from dementia. Our results show the consistent effectiveness of traditional CSF biomarkers in AD
diagnostics. However, these markers are relatively ineffective in differentiating between MCI and the dementia stage, where
the quantified metabolomics data provided significant benefit.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disease characterized by extracellular
amyloid-� plaques and axonal tau neurofibrillary tan-
gles. Symptoms of AD include loss of memory and
other cognitive features, which are usually the first
noticeable hallmarks of the disease. Current con-
sensus on the AD symptom profile indicates that
pathologic features in the brain are present before
cognitive impairments arise [1]. Changes in patient
cognition are routinely tested and the results are
used in diagnostics. Patients who suffer from cog-
nitive deficits, but do not meet the AD criteria [2–4],
are classified as having mild cognitive impairment
(MCI). By definition, MCI is considered a transi-
tory phase between normal cognition and dementia;
however, non-progressive forms of stable MCI also
exist [5, 6]. A definite diagnosis in AD is determined
by combining histopathological evidence (autopsy or
brain biopsy) with clinical and genetic evidence [3,
4]. The challenges in early diagnosis have led to the
discovery of biomarkers that can assist in ascertaining
a proper diagnosis. The most widely used biomarkers
for AD are the cerebrospinal fluid (CSF) concentra-
tions of amyloid-� 42 (A�42), phosphorylated tau
protein (pTau), and total tau (tTau), and findings from
imaging setups. CSF biomarkers correlate with brain
pathological findings [7, 8] and are included in the
current diagnostic criteria [2].

The diagnostic profiles of neurodegenerative dis-
eases are often overlapping due to mixed pathologies
and similar symptoms among different dementias.
Similarities produce challenges in diagnostics, thus
making differentiation between diagnostic groups
more difficult. CSF markers of AD have been shown
to provide limited aid in differentiating AD from other
neurodegenerative diseases [9], despite the fact that
AD-type pathology can be frequent in other demen-
tias [10]. However, a still prevalent issue in AD
diagnostics is the recognition of the disease states
between healthy cognition and AD. While current
biomarkers enable the distinction of AD from other
neurodegenerative diseases with enough accuracy,
relevant measures for assessing AD state and pro-
gression are sparse. The use of non-clinical data,
such as quantified metabolic profiles, could benefit
the differentiation models in diagnostics disease stage
recognition.

Metabolomics can provide a viewpoint to assess
metabolism during neurodegeneration and in the
presence of certain pathological features. Most of

the metabolomics research is cardiovascular driven,
but metabolomics approaches have gained popu-
larity in neurology. There is existing information
regarding cross-sectional metabolic changes in AD
versus controls [11–13] and findings are also reported
from studies distinguishing AD dementia from pre-
clinical AD or MCI [14–17]. To highlight, lower
plasma serotonin, phenylalanine, proline, lysine,
phosphatidylcholine, taurine, and acylcarnitine were
associated with conversion from MCI to AD [14].
Several phospholipids were also seen altered in
dementia and MCI [14, 15]. Conversion to AD
can also be assessed in the perspective of affected
metabolic routes. For example, a study illustrates
connections between MCI to AD conversion and
polyamine and arginine metabolism [16].

The aim of this study was to examine the efficacy
of serum and CSF metabolic profiles when discrimi-
nating between amyloid-positive dementia, MCI, and
amyloid-negative controls with normal cognition and
compare it to the performance of traditional CSF AD-
biomarkers of A�42, tTau, and pTau. To combine the
large set of metabolomics data, we use a supervised
machine learning model, the Disease State Index
(DSI), as the classifier. This model was originally
introduced for early diagnosis of AD and has proven
to be effective in predicting MCI progression [18, 19]
and the differential diagnostics of neurodegenerative
diseases [20, 21].

MATERIALS AND METHODS

Cohort and clinical evaluation

The study group was formed by 498 individuals
who were examined for neurodegenerative diseases
at the Department of Neurology, Kuopio Univer-
sity Hospital (Table 1). The cohort was divided
by diagnosis into three groups: AD-type dementia
(n = 359), MCI (n = 96), and healthy controls (n = 43).
Dementia and MCI patients were diagnosed by a
neurologist using the current criteria at that time
[3, 5]. Diagnosis for AD involved histopathologi-
cal and clinical verification of the disease, or the
presence of clinical features with positive genetic
background [3]. Patients with MCI showed cogni-
tive decline that is not accountable to normal aging
but does not show features of full dementia or
impaired normal functional activities [5]. Controls
refer to patients who were examined due to transient
neurologic symptoms. This group consists of cases
who were examined in the outpatient service due
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Table 1
Demographic data for all participants and the subgroup of dementia and MCI with amyloid pathology (CSF A�42 < 500 pg/ml) and controls

without amyloid pathology (CSF A�42 > 500 pg/ml)

All cases Amyloid subgroups
Dementia MCI Controls Dementia A�42 + MCI A�42 + Controls A�42 –

Cases 359 (72%) 96 (19%) 43 (9%) 214 (71%) 51 (17%) 36 (12%)
Age, y 72.8 (7.7) 70.3 (9.2) 58.5 (10.9) 72.0 (8.0) 71.1 (8.8) 56.6 (9.9)
Sex, female/male 241/118 (67/33%) 39/57 (41/59%) 18/25 (42/58%) 137/76 (64/36%) 25/26 (49/51%) 14/22 (39/61%)
MMSE score 19.3 (4.7) 24.3 (2.8) 26.3 (4.8) 19.1 (4.5) 24.1 (2.6) 26.9 (3.7)
APOE �4 prevalence 241 (72%) 48 (67%) 7 (23%) 161 (80%) 31 (73%) 5 (19%)
CSF markers, pg/ml
A�42 502 (179) 530 (248) 767 (266) 391 (71) 346 (88) 836 (220)
tTau 507 (290) 417 (225) 223 (111) 526 (289) 435 (224) 211 (93)
pTau 77 (34) 71 (29) 51 (19) 79 (34) 73 (29) 52 (19)

A�42, amyloid-� 42; APOE �4, Apolipoprotein E epsilon 4; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; MMSE, Mini-Mental
State Examination; pTau, phosphorylated tau; tTau, total tau. Values are displayed as means (standard deviation) or number (percentage).
Missing values: 1 for tTau, 68 for MMSE and 59 for APOE.

to headache, depression-induced cognitive deficits,
unspecified temporary cognitive decline, or other
subjective memory complaints.

The current National Institute on Aging and
Alzheimer’s Association (NIA-AA) research criteria
for AD at the MCI and dementia stages recommend
biomarker supported diagnosis for amyloid-� (A) and
tau (T) pathology along with neurodegeneration (N)
[22]. Of the dementia patients, 107 (30%) had a fully
positive AD CSF marker profile (A�42 <500 pg/ml,
tTau >400 pg/ml, and pTau >70 pg/ml), while 21
(22%) of MCI and only one (2%) control were seen
having fully positive AD type CSF findings. AD type
CSF amyloid findings were seen in 213 (60%) demen-
tia patients, 51 (53%) MCI patients, and in seven
controls (16%). Five (12%) control subjects had pos-
itive CSF tau profile (either tTau >400 pg/ml or pTau
>70 pg/ml), while 215 (60%) dementia patients and
46 (51%) MCI patients had positive CSF tau find-
ings. The full biomarker profiles by diagnostic group
are shown in Table 1. The selection of patients for
the classification used CSF A�42 < 500 pg/ml as an
inclusion criterion for MCI and Dementia with AD
related pathology and as an exclusion criterion for
Controls. The distribution of amyloid and tau pathol-
ogy, as well as positive neurodegeneration status in
the study cohort according to the NIA-AA research
criteria for AD is shown in Supplementary Table 1.

All patients underwent medical examination. Dur-
ing this visit, serum and CSF samples were drawn, the
medical history was mapped, structural MRI and CT
imaging and laboratory analyses were conducted, and
patient cognition was evaluated with the Mini-Mental
State Examination (MMSE) [23]. CSF was drawn
using lumbar puncture from the space between L3-L4
or L4-L5 and frozen (–80◦C) for storage. This study

was approved by the local ethical committee (per-
mit numbers 5//2002 & 42//2013). Written informed
consent was obtained from all subjects. Examination,
treatment, and diagnosis of patients were not affected
by this study.

Clinical AD markers

Quantification procedures using the enzyme-
linked immunosorbent assay for A�42, pTau, and
tTau, and thresholds for their use in the diagnostic
criteria were described in 2005 by Herukka et al. [24].

Serum and CSF nuclear magnetic resonance
spectroscopy metabolomics

Metabolic profiles from serum and CSF were
measured with separate but similar platforms using
one-dimensional proton NMR spectroscopy. These
platforms were chosen due to their ability to measure
absolute metabolite concentrations, instead of rela-
tive. Furthermore, both platforms provided a large
and good quality variable set in a high-throughput
manner. Metabolite concentrations were quantified
from serum samples as previously displayed by Soini-
nen et al. [25, 26]. The serum metabolomics platform
was recently featured in a large scale AD metabolic
profiling study [13].

The frozen (–80◦C) CSF samples were thawed
in room temperature, centrifuged (3,000 g, 10 min,
+4◦C), and mixed with a monopotassium phos-
phate buffer (495 �l CSF + 55 �l 400 mM KH2PO4,
0.5 mM, trimethylsilyl propanoic acid, 12.4 mM
NaN3, pH 7.0). The NMR spectra (Bruker
noesygppr1d pulse sequence, 96 k data points, 64
transients, 10 ms mixing time, 25 Hz irradiation
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field for water suppression, 2.7 s acquisition time,
and 5.0 s relaxation delay) were recorded with a
Bruker AVANCE III HD 600 MHz NMR spectrom-
eter equipped with a Prodigy TCI cryoprobe. The
individual CSF metabolites were quantified from the
NMR spectra using Total-Line-Shape fitting [27].

Disease state index

The DSI [18] measures the similarity of the data of
a subject to a set of controls and positive cases. The
DSI value is a scalar number from zero to one. This
value denotes the similarity to the state of the disease,
MCI or dementia in this case, in the given data when
compared to data in the training set, which in this case
is randomly chosen from the study data via 10-fold
cross validation. To simplify, values near one indicate
that cases in the study set closely resemble dementia
or MCI cases in the training data. Conversely, val-
ues near zero would mean that the cases in the study
data display strong similarities with healthy control
or non-demented cases in the training data.

Using a fitness function, an index value is com-
puted for a single measurement, such as the CSF
tTau concentration of a subject, by comparing it to
the distribution of the training data by diagnosis. The
fitness function is the share of false negative errors
divided by the sum of false negative and positive
errors, using the measurement value x as a thresh-
old for classification. It assigns a value of zero to
measurement values unique to controls and a value
of one to values unique to disease cases. Relevance,
which is the Youden index of the distribution, displays
how robustly a variable can in general discriminate
between the two diagnoses—it captures the overlap
between the distributions (control versus disease) of
the variable in the database. If the distributions com-
pletely overlap, the relevance is zero, and if they are
separate, the relevance is one. A composite index
value is calculated by combining the index and rele-
vance as a weighted arithmetic mean. These steps are
iterated, and previous index values from each itera-
tion serve as evaluators for relevance and fitness. The
final composite value of the iteration is the overall
DSI value of the classifier [18].

The Disease State Fingerprint (DSF) is a visualiza-
tion of the DSI classifier. It shows the index values at
each level and illustrates them as colored boxes. Blue
color is given to values near zero (similar to a negative
case) and red to values near one (similar to a positive
case). White denotes values near 0.5, which is neither
more similar to a negative or a positive diagnosis. Box

size is determined by relevance, meaning larger boxes
indicate a better ability to distinguish between nega-
tive and positive cases. The advantages of the DSI and
DSF approach as compared to other machine learn-
ing methods are: a robust way of dealing with missing
data, which is very common in medical set-ups; pos-
sibility to include a variety of measures, which can
be both scalar and categorical; a graded classification
instead of a binary ‘yes/no’ classification; and an intu-
itive way of visualizing the results which improves
confidence in decision making.

Data analysis

We utilized a variable set totaling 109 variables
from all data sources. Of these variables, 34 were CSF
low-molecular-weight metabolites (LMWM) and 57
were serum lipoproteins, fatty acids, and related mea-
sures. Eighteen measures were serum LMWM. Three
measures were clinical CSF markers of AD (A�42,
tTau, and pTau).

The DSI classifier models were tested with
100*10-fold cross-validation using the area under
receiver-operator curve (AUC) for obtained index
values with 95% confidence intervals. Metabolomics
data was grouped into Serum lipids, Serum LMWM,
and CSF LMWM. Serum lipids were further grouped
into lipoproteins, cholesterols, glycerides and phos-
pholipids, and fatty acids. Serum LMWM were
divided into energy and ketone bodies, and amino
acids. CSF LMWM data was distributed into the fol-
lowing subclasses: energy and ketone bodies, amino
acids, organic nitrous compounds, and organosulfurs.
We show the AUCs for the composite index values
for all the subclasses and the overall DSI score, which
is the composite of metabolomics and CSF markers.

The statistical significance of differences in mean
values between diagnostic groups was tested by fit-
ting an ANOVA model with the LSD post-hoc test.
Significant differences of frequencies in categorical
variables were tested with the chi-squared test. The
threshold for a statistically significant difference in
post-hoc LSD and the chi-squared test was p < 0.05.

We used the paired t-test to see if adding either
metabolomic profiles or CSF markers would improve
the AUCs of the overall DSI compared to the classifier
with only CSF markers or metabolomic profiles.

RESULTS

The demographics of the study population can be
found in Table 1. Healthy controls were younger than
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Table 2
AUCs from Disease state index classifiers differentiating between healthy controls without
amyloid pathology, mild cognitive impairment with amyloid pathology and dementia patients

with amyloid pathology. 95% confidence intervals are given with the mean AUC

AUC [95% CI] Control versus Control versus MCI versus
Dementia MCI Dementia

Total CSF + Metabolomics 0.89 [0.87–0.90] 0.84 [0.81–0.87] 0.70 [0.68–0.73]
Total CSF markers 0.87 [0.85–0.89] 0.80 [0.77–0.84] 0.64 [0.61–0.67]

A�42 Not included Not included 0.65 [0.62–0.67]
tTau 0.90 [0.88–0.91] 0.82 [0.79–0.85] 0.58 [0.55–0.60]
PTau 0.78 [0.75–0.80] 0.75 [0.72–0.79] 0.49 [0.47–0.52]

Total Metabolic markers 0.73 [0.71–0.76] 0.75 [0.72–0.78] 0.68 [0.65–0.70]
Total Serum Lipids 0.71 [0.68–0.74] 0.69 [0.65–0.72] 0.61 [0.59–0.64]

Lipoproteins 0.74 [0.72–0.77] 0.72 [0.68–0.76] 0.62 [0.59–0.65]
Cholesterols 0.66 [0.63–0.69] 0.67 [0.63–0.71] 0.62 [0.59–0.65]
Glycerides and phospholipids 0.69 [0.66–0.72] 0.62 [0.58–0.66] 0.51 [0.48–0.53]
Fatty acids 0.66 [0.63–0.69] 0.66 [0.62–0.70] 0.54 [0.51–0.56]

Total Serum LMWM 0.72 [0.69–0.75] 0.64 [0.60–0.68] 0.61 [0.59–0.64]
Energy and ketone bodies 0.62 [0.59–0.65] 0.53 [0.49–0.57] 0.61 [0.58–0.63]
Amino acids 0.70 [0.67–0.73] 0.66 [0.62–0.70] 0.54 [0.51–0.57]

Total CSF LMWM 0.63 [0.60–0.66] 0.73 [0.69–0.77] 0.64 [0.62–0.67]
Energy and ketone bodies 0.55 [0.51–0.58] 0.67 [0.63–0.71] 0.62 [0.59–0.64]
Amino acids 0.65 [0.61–0.68] 0.65 [0.61–0.69] 0.58 [0.55–0.60]
Organic nitrous 0.55 [0.53–0.58] 0.69 [0.66–0.73] 0.52 [0.50–0.55]
Organosulfurs 0.61 [0.58–0.64] 0.53 [0.49–0.56] 0.53 [0.50–0.56]

A�42, amyloid-� 42; AD, Alzheimer’s disease; AUC, area under curve; CSF, cerebrospinal fluid;
LMWM, low-molecular-weight metabolites; MCI, mild cognitive impairment; pTau, phosphory-
lated tau; tTau, total tau.

patients with dementia and MCI. Dementia patients
were slightly older when compared to MCI patients.
The dementia cohort had a significantly higher ratio
of women (67%) when compared to controls (42%)
and patients with MCI (41%). Controls less fre-
quently (23%) carried one or more APOE �4 alleles
when compared to dementia (72%) and MCI (67%)
cohorts. Controls had significantly higher MMSE
scores than dementia and MCI patients. Patients
with dementia had lower MMSE scores than MCI
patients. CSF A�42 concentrations in healthy controls
were higher when compared to dementia and MCI
patients respectively. However, the concentration of
CSF pTau was lower in controls when compared
to dementia and MCI. The concentration of CSF
tTau was higher in dementia than in MCI and higher
against healthy controls. Also, healthy controls had
lower concentrations of CSF tTau than patients with
MCI. Additionally, the table shows demographics
for the subpopulation with amyloid pathology (CSF
A�42 levels <500 pg/ml) for MCI and dementia and
controls without amyloid pathology. Overall, the pop-
ulation used in the classification of amyloid positive
dementia and MCI, and amyloid negative healthy
cognition is similar with the main population of
clinically characterized patients, except for the CSF
amyloid levels, which were used as the inclusion
criteria.

The findings from the DSI classifier discriminat-
ing amyloid positive dementia and MCI, and amyloid
negative control subjects from each other are shown
in Table 2. Outcomes of the classification performed
with the whole dataset, including the clinically char-
acterized dementia and MCI patients, and healthy
controls, are provided in the Supplementary Mate-
rial and Supplementary Table 2. The data used in the
discrimination contains the metabolic profiles quan-
tified from CSF and serum. The results for the DSI
classifier performance in 10-fold cross-validation are
given as AUC using index values from zero to one
as the classification threshold. Visualization of the
MCI versus dementia with amyloid pathology com-
parison using median values is shown in Fig. 1. Group
means for metabolite concentrations are given in Sup-
plementary Table 3. DSI sensitivities, specificities,
and positive and negative predictive values at the
classification threshold of 0.5 are presented in Sup-
plementary Tables 4A-F.

CSF A�42 levels were not included in the com-
parisons between controls and MCI or dementia as
they were used for selecting the subgroups and,
as such, would separate the groups with an AUC
of 1. In the control versus dementia model (AUC
0.89), adding CSF markers (AUC 0.87) to the model
with metabolic profiles (AUC 0.73) improved the
overall classification significantly (p < 0.001), while
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Fig. 1. Disease State Fingerprint for MCI with amyloid pathology versus Dementia with amyloid pathology. These figures illustrate a
hypothetical case where all measurement values are equal to the median value for the diagnostic group. The numbers are the Disease State
Index values for each comparison and range between 0 and 1 and are also reflected in the color scale of the nodes from blue to red. Blue
color indicates more similarity MCI, while red indicates a higher similarity to Dementia, and white is equally typical for both diagnoses.
The size of a node corresponds to the relevance (Youden index), which is the ability to distinguish the two diagnoses from each other. CSF,
cerebrospinal fluid; LMWM, low-molecular-weight metabolites; MCI, mild cognitive impairment.

adding the metabolic profiles had very little effect
(p = 0.052). Similarly, in the control versus MCI
model (AUC 0.84), adding CSF markers (AUC 0.80)
to the classifier containing the metabolic profiles
(AUC 0.75) improved the overall discrimination sig-
nificantly (p < 0.001), while adding the metabolic
profiles did not have a significant effect (p = 0.06).
Finally, in the MCI versus dementia model (AUC
0.70), both adding CSF markers (AUC 0.64) to the
metabolic profile classifier (AUC 0.68) and vice versa
improved the classification (p < 0.001).

For amyloid negative control versus amyloid pos-
itive dementia comparison serum lipids (AUC 0.71)
and serum LMWM (AUC 0.72) were more effective
than CSF LMWM (AUC 0.63) in the classification

analysis. For control versus MCI, CSF LMWM (AUC
0.73) was the most effective metabolic group. For
MCI versus dementia, all metabolic groups had simi-
lar classification ability. When classifying amyloid
negative controls from amyloid positive dementia,
lipoproteins were the best performing classifier of
the metabolic subclasses (AUC 0.74). Otherwise,
the subclasses performed in a similar fashion (AUC
range 0.61 to 0.70), excluding CSF energy and ketone
bodies and organic nitrous compounds (AUC 0.55).
Lipoproteins were also the best metabolic subclass
when comparing amyloid positive MCI to amyloid
negative controls (AUC 0.72). The lowest classifica-
tion strength was retained by serum energy and ketone
bodies and CSF organosulphurs (AUC 0.53). Other-



O. Jääskeläinen et al. / Discriminating AD and MCI Using Metabolomics 283

wise, there were no clear separation among metabolic
subclasses (AUC range 0.62 – 0.69). When classify-
ing amyloid positive MCI from amyloid dementia, it
was not possible to discern a clearly best metabolic
subclass (AUC range 0.51 – 0.62). Reminiscent
of the findings using larger subclasses, the smaller
metabolic subclasses had similar AUCs when com-
pared to the AD CSF markers individually; however,
CSF pTau had the lowest classification strength, being
the only classifier with an AUC under 0.5. Uniformly,
the serum lipid subclasses were better at classifying
amyloid positive states from amyloid negative con-
trols than they were at classifying amyloid positive
MCI and dementia from each other.

Sex-related differences in discrimination strength

In order to illustrate sex-related differences in dis-
crimination strength of the diagnostic groups, the
data from males and females were analyzed sepa-
rately [28] for the overall groups. In men, the CSF
biomarkers of AD were better at discriminating con-
trols from dementia and MCI (AUCs 0.87 and 0.82,
respectively) when compared to the metabolic pro-
files (AUCs 0.72 and 0.67). Likewise, in women, the
discrimination of controls from dementia and MCI
was more robust when using the CSF markers of AD
instead of metabolic profiles (AUCs 0.84 and 0.80
versus 0.74 and 0.73). The discrimination of dementia
from MCI still follows the same pattern in both sexes
when compared to conjoined data: Metabolic profiles
better discriminates dementia from MCI when com-
pared to the CSF markers of AD (AUCs in men: 0.64
versus 0.55 and in women: 0.70 versus 0.60).

DISCUSSION

This study showed that set of metabolic pro-
files were slightly better at discriminating amyloid
positive MCI from amyloid positive dementia than
traditional CSF biomarkers of AD. Conversely, the
classification of amyloid negative controls from amy-
loid positive MCI or dementia benefitted more from
CSF markers of AD than metabolic data from any
source. Overall, the total classification performance
was similar in both all subjects and the group selected
using the CSF A�42 inclusion criteria and results
showed similar patterns in the relative power of
metabolic profiles and CSF markers during classi-
fication. Analyzing the data separately for men and
women had no relevant effect in terms of the outcome
of the DSI.

The CSF markers of AD seem to classify the
onset and presence of neurodegeneration better
than metabolic profiles. On the other hand, larger
metabolic profiles separated MCI from dementia with
at least equal performance. To reiterate findings from
previous research, the effect of phospholipids were
emphasized in study by Mapstone et al. in 2014,
where progression from MCI to AD dementia was
examined in a metabolomics perspective [14]. The
reported associations seem consistent with what is
currently known about cellular structure of neu-
rons. More specifically, phospholipids are structural
molecules of cellular membranes and are responsible
for several cellular processes such as protein process-
ing and transport. Interestingly, phospholipids had
low performance in our classifications, but are asso-
ciated to neurodegeneration and neuroinflammation
in literature [29–31].

Current findings on metabolomics also notes that
amino acids [13, 16] and lipid bodies [12, 13] such
as cholesterols and lipoproteins are associated with
AD or with the progression from its prodromal
states. Some of these molecules or their close ana-
logues were included in our metabolic subclasses,
which were able to classify MCI from dementia con-
sistently. Furthermore, cholesterols and other lipid
bodies have connections to AD pathophysiology (see,
for example, a review by Wong et al. [32]). All these
considered, there seem to be both pathophysiologi-
cal and population-based evidence of AD and MCI
related metabolic changes that is in line with our
findings.

Additionally, when comparing the amyloid posi-
tive MCI and dementia to amyloid negative controls,
lipoproteins were the best metabolic classifiers in
both classifications. This might be indicative of sup-
posed amyloidogenic processes that are modulated
by lipoproteins, cholesterol, and other lipids on and
in the close vicinity of the lipid rafts [32, 33]. The
fact that lipoproteins were not particularly effective
in discriminating disease states with already exist-
ing amyloid load, i.e., classifying amyloid positive
dementia and MCI from each other, could also point
toward the amyloidogenic properties of these lipid
rafts and their components. Evidence also suggests
that the amyloidogenic processing on the lipid rafts
is already active in early stages of AD [34]. Further-
more, cholesterols, and glycerides and phospholipids
were also effective when classifying amyloid positive
dementia and MCI from controls. This effect was also
lesser when classifying amyloid positive dementia
and MCI from each other, supporting the mentioned
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connections between amyloidogenic processing and
lipid rafts.

When comparing amyloid negative controls to
amyloid positive dementia, the inclusion of metabolic
profiles with CSF markers of AD provided additional
leverage in discrimination. In this case, the increase
in efficacy was relatively modest, but showed that
the addition of metabolic profiles did not diminish
discrimination and would benefit the classification
in general. It also became evident that, in this case,
the metabolic profiles were most useful when they
were added to the classifier with the clinical CSF
AD markers. This outcome was also consistent in
the classification of amyloid positive MCI and amy-
loid negative controls. However, when discriminating
clinically characterized MCI from a healthy cogni-
tion, we noted that the classifier was more efficient
in terms of discrimination when the CSF markers of
AD were included without any components from the
metabolomics data in the overall cohort.

The CSF markers of AD were less efficient in
describing the disease state than we originally postu-
lated. It seems feasible to supplement these markers
with non-clinical data, e.g., metabolic profiles to
form a better model for the disease progression
and state. While the markers of AD, and espe-
cially CSF A�42, have relatively good diagnostic
performance, they seem to lack the power to effi-
ciently discriminate different stages of the disease.
The global effort to connect AD pathophysiol-
ogy to metabolic changes is still ongoing. There
seem to be relevant connections between these
pathways, some of which are also visible in our
findings. Despite this, blood lipids and metabolic
profiles are not yet viable candidates for biomark-
ers of neurodegeneration but serve well in studying
pathophysiology, associated risks, and comorbidities,
especially in the perspective of lifestyle. Furthermore,
it is inconclusive whether the metabolites are directly
affecting disease course or if their abnormal levels
are simply a secondary effect stemming from neu-
rodegeneration such as aberrant membrane lipids in
biofluids or related symptoms like dietary changes or
weight loss.

Strengths and limitations

This study features a substantial number of
study participants and is large in the scope of AD
metabolomics. A weakness in study design is the
heterogeneous dementia population; we cannot fully
exclude the presence of mixed pathologies from

other neurodegenerative diseases among clinically
diagnosed AD dementia patients. There were some
dementia patients who did not have a typical AD
CSF peptide profile but were diagnosed with clini-
cal AD regardless. Similarly, the patients with MCI
might also portray pathological features from other
neurodegenerative diseases besides AD. This was
mitigated by excluding those clinically diagnosed AD
and MCI cases which did not show signs of amyloid
pathology. Due to the size of the study population, tau
pathology was not considered as an additional inclu-
sion or exclusion criteria and as such our results do
not fully describe a biomarker defined AD or MCI
due to prodromal AD.

Unfortunately, there is a significant age differ-
ence between the control and MCI/dementia groups,
which makes it difficult to ascertain if the found dif-
ferences in metabolic concentrations are affected by
diagnostic grouping only or if age also plays a part.
There is no effective way to correct for this in a
population this size, as a linear fit for age in the con-
trol group would likely give unreliable results in the
notably older MCI/dementia groups due to errors in
extrapolation. The MCI versus dementia comparison
is not affected by age differences and is more reliable
in this sense.

One strong feature in the study is a well-defined
control population, albeit small, and containing indi-
viduals with subjective memory complaints. The
controls did not include patients with alcohol con-
sumption related loss of cognition. The reported
complaints regarding cognitive decline among con-
trols were all to be of transient origin. Furthermore,
we did subgroup analysis with the controls that did
not have positive amyloid CSF findings. Another
strong aspect of the study are the metabolomics plat-
forms. Both are based upon thoroughly used and
validated methodology and provide good quality data
points in absolute metabolite concentrations instead
of relative ones.

Conclusions

We conclude that the clinical CSF markers of
AD are better at discriminating controls from both
AD-type dementia and MCI patients. However, MCI
and dementia patients were better discriminated by
grouped metabolic profiles than the CSF mark-
ers of AD. Similar findings were also seen when
analyzing the whole clinically characterized popu-
lation of dementia and MCI patients, and healthy
controls.
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M, Duijn CM van, Seshadri S, Salomaa V (2018) Associ-
ation of branched-chain amino acids and other circulating
metabolites with risk of incident dementia and Alzheimer’s
disease: A prospective study in eight cohorts. Alzheimers
Dement 14, 723-733.

[14] Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre
TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR,
Haley JM, Nazar MD, Rich SA, Berlau DJ, Peltz CB, Tan
MT, Kawas CH, Federoff HJ (2014) Plasma phospholipids
identify antecedent memory impairment in older adults. Nat
Med 20, 415-418.

[15] Li D, Misialek JR, Boerwinkle E, Gottesman RF, Shar-
rett AR, Mosley TH, Coresh J, Wruck LM, Knopman DS,
Alonso A (2016) Plasma phospholipids and prevalence of

https://www.j-alz.com/manuscript-disclosures/19-1226r1
https://www.j-alz.com/manuscript-disclosures/19-1226r1
https://dx.doi.org/10.3233/JAD-191226
https://dx.doi.org/10.3233/JAD-191226
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