49 research outputs found
Spin dynamics in semiconductors
This article reviews the current status of spin dynamics in semiconductors
which has achieved a lot of progress in the past years due to the fast growing
field of semiconductor spintronics. The primary focus is the theoretical and
experimental developments of spin relaxation and dephasing in both spin
precession in time domain and spin diffusion and transport in spacial domain. A
fully microscopic many-body investigation on spin dynamics based on the kinetic
spin Bloch equation approach is reviewed comprehensively.Comment: a review article with 193 pages and 1103 references. To be published
in Physics Reports
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species
Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4′- dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug
iLAP: a workflow-driven software for experimental protocol development, data acquisition and analysis
<p>Abstract</p> <p>Background</p> <p>In recent years, the genome biology community has expended considerable effort to confront the challenges of managing heterogeneous data in a structured and organized way and developed laboratory information management systems (LIMS) for both raw and processed data. On the other hand, electronic notebooks were developed to record and manage scientific data, and facilitate data-sharing. Software which enables both, management of large datasets and digital recording of laboratory procedures would serve a real need in laboratories using medium and high-throughput techniques.</p> <p>Results</p> <p>We have developed iLAP (Laboratory data management, Analysis, and Protocol development), a workflow-driven information management system specifically designed to create and manage experimental protocols, and to analyze and share laboratory data. The system combines experimental protocol development, wizard-based data acquisition, and high-throughput data analysis into a single, integrated system. We demonstrate the power and the flexibility of the platform using a microscopy case study based on a combinatorial multiple fluorescence in situ hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the open source license AGPL from <url>http://genome.tugraz.at/iLAP/</url>.</p> <p>Conclusion</p> <p>iLAP is a flexible and versatile information management system, which has the potential to close the gap between electronic notebooks and LIMS and can therefore be of great value for a broad scientific community.</p
Dietary availability determines metabolic conversion of long‐chain polyunsaturated fatty acids in spiders : a dual compound‐specific stable isotope approach
Consumers feeding at the aquatic–terrestrial ecosystem interface may obtain a mixture of aquatic and terrestrial diet resources that vary in nutritional composition. However, in lake riparian spiders, the relative significance of aquatic versus terrestrial diet sources remains to be explored. We investigated the trophic transfer of lipids and polyunsaturated fatty acids (PUFA) from emergent aquatic and terrestrial insects to spiders at varying distances from the shoreline of a subalpine lake in Austria, using differences in fatty acid profiles and compound-specific stable carbon (δ13C) and hydrogen (δ2H) isotopes. The omega-3 PUFA content of emergent aquatic insects was higher than that of terrestrial insects. Emergent aquatic insects contained on average 6.6 times more eicosapentaenoic acid (EPA) and 1.2 times more α-linolenic acid (ALA) than terrestrial insects, whereas terrestrial insects contained on average 2.6 times more linoleic acid (LIN) than emergent aquatic insects. Spiders sampled directly on the lake and in upland habitats had similar EPA contents, but this EPA was derived from different diet sources, depending on the habitat. The δ13CEPA and δ2HEPA values of ‘lake spiders' revealed an aquatic diet pathway (i.e. EPA of aquatic origin). In contrast, EPA of spiders collected in terrestrial habitats was depleted in both 13C and 2H compared to any potential food sources, and their ALA isotopic values, suggesting that EPA was partly bioconverted from its dietary precursor ALA (i.e. internal pathway). The δ2H values of fatty acids clearly indicated that diet sources differed depending on the spider's habitat, which was less evident from the δ13C values of the fatty acids. Our data highlight that spiders can use two distinct pathways (trophic versus metabolic) to satisfy their physiological EPA demand, depending on habitat use and dietary availability.publishe
The Impact of Prolonged Inflammation on Wound Healing
The treatment of chronic wounds still challenges modern medicine because of these wounds’ heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds