327 research outputs found

    Toward Understanding Massive Star Formation

    Full text link
    Although fundamental for astrophysics, the processes that produce massive stars are not well understood. Large distances, high extinction, and short timescales of critical evolutionary phases make observations of these processes challenging. Lacking good observational guidance, theoretical models have remained controversial. This review offers a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation: - monolithic collapse in isolated cores - competitive accretion in a protocluster environment - stellar collisions and mergers in very dense systems We also review the observed outflows, multiplicity, and clustering properties of massive stars, the upper initial mass function and the upper mass limit. We conclude that high-mass star formation is not merely a scaled-up version of low-mass star formation with higher accretion rates, but partly a mechanism of its own, primarily owing to the role of stellar mass and radiation pressure in controlling the dynamics.Comment: 139 pages, 18 figures, 5 tables, glossar

    Theory of Star Formation

    Full text link
    We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation -- turbulence, magnetic fields, and self-gravity -- are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.Comment: 120 pages, to appear in ARAA. No changes from v1 text; permission statement adde

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Randomized Trial of Artesunate+Amodiaquine, Sulfadoxine-Pyrimethamine+Amodiaquine, Chlorproguanal-Dapsone and SP for Malaria in Pregnancy in Tanzania

    Get PDF
    Malaria in pregnancy is serious, and drug resistance in Africa is spreading. Drugs have greater risks in pregnancy and determining the safety and efficacy of drugs in pregnancy is therefore a priority. This study set out to determine the efficacy and safety of several antimalarial drugs and combinations in pregnant women with uncomplicated malaria.Pregnant women with non-severe, slide proven, falciparum malaria were randomised to one of 4 regimes: sulfadoxine-pyrimethamine [SP]; chlorproguanil-dapsone [CD]; SP+amodiaquine [SP+AQ] or amodiaquine+artesunate [AQ+AS]. Randomisation was on a 1ratio2ratio2ratio2 ratio. Women were admitted for treatment, and followed at days 7, 14, 21, 28 after the start of treatment, at delivery and 6 weeks after delivery to determine adverse events, clinical and parasitological outcomes. Primary outcome was parasitological failure by day 28.1433 pregnant women were screened, of whom 272 met entry criteria and were randomised; 28 to SP, 81 to CD, 80 to SP+AQ and 83 to AQ+AS. Follow-up to day 28 post treatment was 251/272 (92%), and to 6 weeks following delivery 91%. By day 28 parasitological failure rates were 4/26 (15%, 95%CI 4-35) in the SP, 18/77 (23%, 95%CI 14-34) in the CD, 1/73 (1% 95%CI 7-0.001) in the SP+AQ and 7/75 (9% 95%CI 4-18) in the AQ+AS arms respectively. After correction by molecular markers for reinfection the parasitological failure rates at day 28 were 18% for CD, 1% for SP+AQ and 4.5% for AQ+AS. There were two maternal deaths during the trial. There was no apparent excess of stillbirths or adverse birth outcomes in any arm. Parasitological responses were strikingly better in pregnant women than in children treated with the same drugs at this site.Failure rates with monotherapy were unacceptably high. The two combinations tested were efficacious and appeared safe. It should not be assumed that efficacy in pregnancy is the same as in children.ClinicalTrials.gov NCT00146731

    AMPK α1 Activation Is Required for Stimulation of Glucose Uptake by Twitch Contraction, but Not by H2O2, in Mouse Skeletal Muscle

    Get PDF
    BACKGROUND: AMPK is a promising pharmacological target in relation to metabolic disorders partly due to its non-insulin dependent glucose uptake promoting role in skeletal muscle. Of the 2 catalytic alpha-AMPK isoforms, alpha(2) AMPK is clearly required for stimulation of glucose transport into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose uptake was not reduced in any of the AMPK transgenic mouse models compared with wild type. In contrast, twitch-contraction increased the activity of alpha(1) AMPK, but not alpha(2) AMPK activity nor Akt or AS160 phosphorylation. Glucose uptake was markedly lower in alpha(1) AMPK knockout and KD AMPK muscles, but not in alpha(2) AMPK knockout muscles, following twitch stimulation. CONCLUSIONS/SIGNIFICANCE: These results provide strong genetic evidence that alpha(1) AMPK, but not alpha(2) AMPK, Akt or AS160, is necessary for regulation of twitch-contraction stimulated glucose uptake. To our knowledge, this is the first report to show a major and essential role of alpha(1) AMPK in regulating a physiological endpoint in skeletal muscle. In contrast, AMPK is not essential for H(2)O(2)-stimulated muscle glucose uptake, as proposed by recent studies

    System Dynamics to Model the Unintended Consequences of Denying Payment for Venous Thromboembolism after Total Knee Arthroplasty

    Get PDF
    Background: The Hospital Acquired Condition Strategy (HACS) denies payment for venous thromboembolism (VTE) after total knee arthroplasty (TKA). The intention is to reduce complications and associated costs, while improving the quality of care by mandating VTE prophylaxis. We applied a system dynamics model to estimate the impact of HACS on VTE rates, and potential unintended consequences such as increased rates of bleeding and infection and decreased access for patients who might benefit from TKA. Methods and Findings: The system dynamics model uses a series of patient stocks including the number needing TKA, deemed ineligible, receiving TKA, and harmed due to surgical complication. The flow of patients between stocks is determined by a series of causal elements such as rates of exclusion, surgery and complications. The number of patients harmed due to VTE, bleeding or exclusion were modeled by year by comparing patient stocks that results in scenarios with and without HACS. The percentage of TKA patients experiencing VTE decreased approximately 3-fold with HACS. This decrease in VTE was offset by an increased rate of bleeding and infection. Moreover, results from the model suggest HACS could exclude 1.5% or half a million patients who might benefit from knee replacement through 2020. Conclusion: System dynamics modeling indicates HACS will have the intended consequence of reducing VTE rates. However, an unintended consequence of the policy might be increased potential harm resulting from over administration of prophylaxis, as well as exclusion of a large population of patients who might benefit from TKA
    corecore