6 research outputs found

    Ocean Regime Shift is Driving Collapse of the North Atlantic Right Whale Population

    No full text
    Ocean warming linked to anthropogenic climate change is impacting the ecology of marine species around the world. In 2010, the Gulf of Maine and Scotian Shelf regions of the Northwest Atlantic underwent an unprecedented regime shift. Forced by climate-driven changes in the Gulf Stream, warm slope waters entered the region and created a less favorable foraging environment for the endangered North Atlantic right whale population. By mid-decade, right whales had shifted their late spring/summer foraging grounds from the Gulf of Maine and the western Scotian Shelf to the Gulf of St. Lawrence. The population also began exhibiting unusually high mortality in 2017. Here, we report that climate-driven changes in ocean circulation have altered the foraging environment and habitat use of right whales, reducing the population’s calving rate and exposing it to greater mortality risks from ship strikes and fishing gear entanglement. The case of the North Atlantic right whale provides a cautionary tale for the management of protected species in a changing ocean

    Variation in glider-detected North Atlantic right, blue, and fin whale calls in proximity to high-traffic shipping lanes

    No full text
    Passive acoustic monitoring has become an integral tool for determining the presence, distribution, and behavior of vocally active cetacean species. Acoustically equipped underwater gliders are becoming a routine monitoring platform, because they can cover large spatial scales during a single deployment and have the capability to relay data to shore in near real-time. Yet, more research is needed to determine what information can be derived from glider-recorded cetacean detections. Here, a Slocum glider that monitored continuously for low frequency (<1 kHz) baleen whale vocalizations was deployed across the Honguedo Strait and the associated traffic separation scheme in the Gulf of St. Lawrence, Canada, during September and October 2019. We conducted a manual analysis of the archived audio to examine spatial and temporal variation in acoustic detection rates of North Atlantic right whales (NARWs), blue whales, and fin whales. Call detections of blue and fin whales demonstrated that both species were acoustically active throughout the deployment. Environmental association models suggested their preferential use of foraging areas along the southern slopes of the Laurentian Channel. Results also indicate that elevated background noise levels in the shipping lanes from vessel traffic only minimally influenced the likelihood of detecting blue whale acoustic presence, while they did not affect fin whale detectability. NARWs were definitively detected on less than 20% of deployment days, so only qualitative assessments of their presence were described. Nevertheless, detections of all 3 species highlight that their movements throughout this seasonally important region overlap with a high volume of vessel traffic, increasing their risk of ship strike

    Spezielle Pathologie des Gesichtsfeldes

    No full text
    corecore