276 research outputs found

    Serum Levels of Adipocyte Fatty Acid-Binding Protein Are Associated with the Severity of Coronary Artery Disease in Chinese Women

    Get PDF
    BACKGROUND: Adipocyte fatty acid-binding protein (A-FABP) has been described as a novel adipokine, playing an important role in the development of metabolic syndrome, type 2 diabetes and atherosclerosis. In this study, we investigated the relationship between serum levels of A-FABP and the presence and severity of coronary artery disease (CAD) in Chinese subjects. METHODOLOGY/PRINCIPAL FINDINGS: Circulating A-FABP level was determined by ELISA in 341 Chinese subjects (221 men, 120 women) who underwent coronary angiography. A-FABP levels in patients with CAD were significantly higher compared with non-CAD subjects (P = 0.029 in men; P = 0.031 in women). Serum A-FABP increased significantly in multi-vessel diseased patients than in non-CAD subjects (P = 0.011 in men, P = 0.004 in women), and showed an independent correlation with coronary atherosclerosis index (standardized β = 0.173, P = 0.025). In multiple logistic regression analysis, serum A-FABP was an independent risk factor for CAD in women (OR = 5.637, 95%CI: 1.299-24.457, P = 0.021). In addition, amino terminal pro-brain natriuretic peptide (NT-proBNP) was demonstrated to be positively and independently correlated with A-FABP (standardized β = 0.135, P = 0.027). CONCLUSIONS/SIGNIFICANCE: Serum A-FABP is closely associated with the presence and severity of CAD in Chinese women

    A Predominant Role for Parenchymal c-Jun Amino Terminal Kinase (JNK) in the Regulation of Systemic Insulin Sensitivity

    Get PDF
    It has been established that c-Jun N-terminal kinase 1 (JNK1) is essential to the pathogenesis of insulin resistance and type 2 diabetes. Although JNK influences inflammatory signaling pathways, it remains unclear whether its activity in macrophages contributes to adipose tissue inflammation and ultimately to the regulation of systemic metabolism. To address whether the action of this critical inflammatory kinase in bone marrow-derived elements regulates inflammatory responses in obesity and is sufficient and necessary for the deterioration of insulin sensitivity, we performed bone marrow transplantation studies with wild type and JNK1-deficient mice. These studies illustrated that JNK1-deficiency in the bone marrow-derived elements (BMDE) was insufficient to impact macrophage infiltration or insulin sensitivity despite modest changes in the inflammatory profile of adipose tissue. Only when the parenchymal elements lacked JNK1 could we demonstrate a significant increase in systemic insulin sensitivity. These data indicate that while the JNK1 activity in BMDE is involved in metabolic regulation and adipose milieu, it is epistatic to JNK1 activity in the parenchymal tissue for regulation of metabolic homeostasis

    Taxonomic diversity and identification problems of oncaeid microcopepods in the Mediterranean Sea

    Get PDF
    The species diversity of the pelagic microcopepod family Oncaeidae collected with nets of 0.1-mm mesh size was studied at 6 stations along a west-to-east transect in the Mediterranean Sea down to a maximum depth of 1,000 m. A total of 27 species and two form variants have been identified, including three new records for the Mediterranean. In addition, about 20, as yet undescribed, new morphospecies were found (mainly from the genera Epicalymma and Triconia) which need to be examined further. The total number of identified oncaeid species was similar in the Western and Eastern Basins, but for some cooccurring sibling species, the estimated numerical dominance changed. The deep-sea fauna of Oncaeidae, studied at selected depth layers between 400 m and the near-bottom layer at >4,200 m depth in the eastern Mediterranean (Levantine Sea), showed rather constant species numbers down to ∼3,000 m depth. In the near-bottom layers, the diversity of oncaeids declined and species of Epicalymma strongly increased in numerical importance. The taxonomic status of all oncaeid species recorded earlier in the Mediterranean Sea is evaluated: 19 out of the 46 known valid oncaeid species are insufficiently described, and most of the taxonomically unresolved species (13 species) have originally been described from this area (type locality). The deficiencies in the species identification of oncaeids cast into doubt the allegedly cosmopolitan distribution of some species, in particular those of Mediterranean origin. The existing identification problems even of well-described oncaeid species are exemplified for the Oncaea mediacomplex, including O. media Giesbrecht, O. scottodicarloi Heron & Bradford-Grieve, and O. waldemari Bersano & Boxshall, which are often erroneously identified as a single species (O. media). The inadequacy in the species identification of Oncaeidae, in particular those from the Atlantic and Mediterranean, is mainly due to the lack of reliable identification keys for Oncaeidae in warm-temperate and/or tropical seas. Future efforts should be directed to the construction of identification keys that can be updated according to the latest taxonomic findings, which can be used by the non-expert as well as by the specialist. The adequate consideration of the numerous, as yet undescribed, microcopepod species in the world oceans, in particular the Oncaeidae, is a challenge for the study of the structure and function of plankton communities as well as for global biodiversity estimates

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Ras Inhibition Induces Insulin Sensitivity and Glucose Uptake

    Get PDF
    BACKGROUND: Reduced glucose uptake due to insulin resistance is a pivotal mechanism in the pathogenesis of type 2 diabetes. It is also associated with increased inflammation. Ras inhibition downregulates inflammation in various experimental models. The aim of this study was to examine the effect of Ras inhibition on insulin sensitivity and glucose uptake, as well as its influence on type 2 diabetes development. METHODS AND FINDINGS: The effect of Ras inhibition on glucose uptake was examined both in vitro and in vivo. Ras was inhibited in cells transfected with a dominant-negative form of Ras or by 5-fluoro-farnesylthiosalicylic acid (F-FTS), a small-molecule Ras inhibitor. The involvement of IκB and NF-κB in Ras-inhibited glucose uptake was investigated by immunoblotting. High fat (HF)-induced diabetic mice were treated with F-FTS to test the effect of Ras inhibition on induction of hyperglycemia. Each of the Ras-inhibitory modes resulted in increased glucose uptake, whether in insulin-resistant C2C12 myotubes in vitro or in HF-induced diabetic mice in vivo. Ras inhibition also caused increased IκB expression accompanied by decreased expression of NF-κB . In fat-induced diabetic mice treated daily with F-FTS, both the incidence of hyperglycemia and the levels of serum insulin were significantly decreased. CONCLUSIONS: Inhibition of Ras apparently induces a state of heightened insulin sensitization both in vitro and in vivo. Ras inhibition should therefore be considered as an approach worth testing for the treatment of type 2 diabetes

    Tetradecylthioacetic Acid Increases Hepatic Mitochondrial β-Oxidation and Alters Fatty Acid Composition in a Mouse Model of Chronic Inflammation

    Get PDF
    The administration of tetradecylthioacetic acid (TTA), a hypolipidemic and anti-inflammatory modified bioactive fatty acid, has in several experiments based on high fat diets been shown to improve lipid transport and utilization. It was suggested that increased mitochondrial and peroxisomal fatty acid oxidation in the liver of Wistar rats results in reduced plasma triacylglycerol (TAG) levels. Here we assessed the potential of TTA to prevent tumor necrosis factor (TNF) α-induced lipid modifications in human TNFα (hTNFα) transgenic mice. These mice are characterized by reduced β-oxidation and changed fatty acid composition in the liver. The effect of dietary treatment with TTA on persistent, low-grade hTNFα overexpression in mice showed a beneficial effect through decreasing TAG plasma concentrations and positively affecting saturated and monounsaturated fatty acid proportions in the liver, leading to an increased anti-inflammatory fatty acid index in this group. We also observed an increase of mitochondrial β-oxidation in the livers of TTA treated mice. Concomitantly, there were enhanced plasma levels of carnitine, acetyl carnitine, propionyl carnitine, and octanoyl carnitine, no changed levels in trimethyllysine and palmitoyl carnitine, and a decreased level of the precursor for carnitine, called γ-butyrobetaine. Nevertheless, TTA administration led to increased hepatic TAG levels that warrant further investigations to ascertain that TTA may be a promising candidate for use in the amelioration of inflammatory disorders characterized by changed lipid metabolism due to raised TNFα levels
    corecore