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Abstract

Background: Chronic inflammation may contribute to insulin resistance (IR), metabolic syndrome and
atherosclerosis although evidence of causality is lacking in humans. We hypothesized that very low-dose
experimental endotoxemia would induce adipose tissue inflammation and systemic IR during a low-grade but
asymptomatic inflammatory response and thus provide an experimental model for future tests of pharmacologic
and genomic modulation of cardio-metabolic traits in humans.

Methods: Ten healthy, human volunteers (50% male, 90% Caucasian, mean age 22.7 ± 3.8) were randomized in a
double-masked, placebo-controlled, crossover study to separate 36-hour inpatient visits (placebo versus
intravenous-LPS 0.6 ng/kg). We measured clinical symptoms via the McGill pain questionnaire and serial vital signs.
Plasma and serum were collected for measurement of cytokines, C-reactive protein, insulin and glucose, serial
whole blood & subcutaneous adipose tissue mRNA expression were measured by real-time PCR. HOMA-IR, a well-
validated measure of IR was calculated to estimate insulin resistance, and frequently sampled intravenous glucose
tolerance testing (FSIGTT) was performed to confirm an insulin resistant state. We performed ANOVA and within
subject ANOVA to understand the differences in cytokines, adipose tissue inflammation and IR before and after LPS
or placebo.

Results: There was no significant difference between placebo and LPS in clinical responses of symptom scores,
body temperature or heart rate. However, low-dose endotoxemia induced a rapid and transient 25-fold induction
of plasma TNF-alpha and 100-fold increase in plasma IL-6 (Figure 1B) (p< 0.001 for both) both peaking at two
hours, followed by modest inflammation in adipose tissue with increases in mRNA levels of several inflammatory
genes known to modulate adipose and systemic insulin resistance. Adipose tissue mRNA levels of IL-6 (peak 6-fold,
ANOVA F= 27.5, p< 0.001) and TNF-alpha (peak 1.8-fold, F = 2.9, p= 0.01) increased with MCP-1 (peak 10-fold, F = 5.6,
p< 0.01) and fractalkine (CX3CL1) (peak 15-fold, F = 13.3, p< 0.001). Finally, HOMA-IR was 32% higher following LPS
compared to placebo (p< 0.01) and insulin sensitivity declined by 21% following LPS compared to placebo
(p< 0.05).
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Conclusions: We present a low dose human endotoxemia model of inflammation which induces adipose tissue
inflammation and systemic insulin resistance in the absence of overt clinical response. Such a model has the
potential for broad and safe application in the study of novel therapeutics and genomic influences in
cardio-metabolic disease.

Keywords: Inflammation, Obesity, Atherosclerosis, Insulin resistance
Background
Chronic inflammation is a central feature in the patho-
physiology of insulin resistance (IR) and diabetes [1-3],
both of which are risk factors for the development of
atherosclerosis [4]. Indeed, IR and overt type-2 diabetes
may emerge during human infections and sepsis [5] via
activation of toll-like receptor 4 (TLR-4) signaling. TLR4
also may be activated by endogenous ligands that are
increased in diet induced obesity and IR [6]. Further, ex-
perimental studies in mouse models of TLR4 deficiency
demonstrate a reduction in diet induced obesity [6] and
atherosclerosis [7].
The TLR4 pathway can be activated in humans by ex-

ogenous administration of standardized preparations of
lipopolysaccharide (LPS) under Food and Drug Adminis-
tration oversight. We and others have shown that insulin
resistance [8,9], adipose tissue inflammation [10] and
atherogenic lipoprotein changes [11,12] observed acutely
during this experimental stimulation resemble those
observed chronically in obesity, insulin resistance and
atherosclerosis. However, our prior experimental work,
which used a moderate dose of LPS (3 ng/kg) [8], was
associated with clinical symptoms and modulation of
counter-regulatory hormones which limit the potential
broad application for the study of cardiometabolic
diseases.
There is a great need for development of a feasible

human model of low grade inflammation in which novel
therapies and endogenous exposures, such as genotypic
variation, can be tested for their modulation of inflam-
matory atherogenic stress. In this paper, we address the
hypothesis that low dose endotoxemia (LPS 0.6 ng/kg)
induces biologically relevant inflammatory metabolic
changes in the absence of overt clinical responses. Our
goal was to investigate the feasibility of this potential
subclinical model in humans in order provide a tool for
testing drugs, diets and genes that modulate inflamma-
tory cardio-metabolic disease.
Methods
Endotoxemia clinical protocol
We performed a double blind, placebo-controlled, ran-
dom sequence, crossover trial of young, healthy, non-
smoking males and females (n = 10) who had no vascular
disease, diabetes, kidney or liver dysfunction, active
infection, elevated glucose, dyslipidemia, hypertension,
nor treatment with anti-hypertensive or lipid-modifying
medications. After informed consent, participants met
with a Clinical Translational Research Center (CTRC)
dietician for a weight maintenance diet (controlled for
saturated fat and cholesterol intake) to start two-weeks
before each of the two 36- hour stays. They were admit-
ted to the CTRC at 6 pm of Day 0, given a standard
meal at 7 pm and administered a McGill Short Form
Pain Questionnaire [13] and an intravenous (IV) cath-
eter was placed for the administration of saline (100 mL/
h) at 10 pm. At 5:30 am on Day 1, another IV catheter
was placed for the purpose of serial blood sampling, and
baseline blood was drawn prior to slow administration,
over three minutes, of lipopolysaccharide (LPS) (0.6 ng/
kg, US standard reference endotoxin; lot# CC-RE-LOT-
1 + 2 from Clinical Center, National Institutes of Health)
or placebo (saline). Following injection, a standardized
breakfast was provided.
Serial blood samples and the McGill Short Form Pain

Questionnaire were taken at one, two, four, six, 12, 18
and 24 hours following the LPS or placebo intervention.
Blood pressure was measured every 15 minutes for the
first eight hours following LPS/placebo administration
and hourly for the remaining 16 hours of the stay. Heart
rate was measured hourly for the first eight hours post-
intervention and then at 12, 16 and 24 hours. Subcuta-
neous adipose tissue biopsies under local anesthesia (1%
lidocaine) were obtained 5 minutes prior to LPS/placebo
injection and at four, 12 and 24 hours following injec-
tion. The four serial subcutaneous gluteal adipose biop-
sies were performed from a different site each time - i.e.
left upper, left lower, right upper, and right lower
regions. Subjects were also provided standardized meals
at 12 pm and 6 pm on Day 1. Twenty-four hours follow-
ing the administration of LPS or placebo (approximately
6:00 am on Day 2), a frequently sampled intravenous
glucose tolerance test (FSIGTT) was performed to calcu-
late insulin sensitivity [14]. The crossover CTRC visit oc-
curred one month following the first visit in which
identical procedures and protocol were followed.
Blood measures
Serial blood draws occurred in tubes containing EDTA,
placed on ice briefly and centrifuged for the isolation of
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plasma, which was divided into aliquots and stored at
−80°C until the time of analyses. Plasma levels of insulin,
growth hormone and cortisol (radio-immunoassays
(RIA), Linco Research, St Charles, MO), and as previ-
ously described [8,10,15], plasma levels of tumor necro-
sis factor alpha (TNF), interleukin-6 (IL-6) (Linco
Multiplex ELISAs on Luminex IS100; Austin TX) were
measured in duplicate per manufacturers’ guidelines.
Plasma lipids and glucose were measured enzymatically
(Wako Diagnostics, Richmond, VA) on a Hitachi 912
automated chemistry system in a Center for Disease
Control-certified lipid laboratory as described previously
[15,16], and biomarker C-reactive protein (CRP; high
sensitivity) levels were assayed using immunoturbideme-
try as described [17].

Adipose tissue biopsy and RNA expression
Adipose tissue samples obtained via needle aspiration bi-
opsy as described [8,10,15] were treated with RNA
LaterW (Qiagen, Valencia, CA), snap frozen and stored at
−80°C. Fat tissue RNA was extracted with the RNeasy
total RNA kit (Qiagen, Valencia, CA), providing approxi-
mately 1–4 g RNA per 100 mg tissue, and subjected to
RT-PCR followed by quantitative PCR (qPCR) on an Ap-
plied Biosystems 7300 Real-Time PCR System (ABI, Fos-
ter City, CA). Adipose tissue mRNA levels of IL-6, TNF,
suppressor of cytokine signaling (SOCS)-1, SOCS-2,
SOCS-3, SOCS-6, monocyte chemoattractant protein
(MCP)-1 and fractalkine (CXC3L1) were determined as
we have described [8,10,15]. Variability in total cDNA
concentrations between samples was normalized by sub-
tracting the beta-actin Ct value from the target Ct value
for each sample. The comparative Ct method was used
to analyze changes in gene expression [18]. The ΔCt for
each post-LPS sample was compared to the mean ΔCt

for all pre-LPS samples in a single individual using the
relative quantitation 2-(ΔΔCt) method to determine fold-
change from baseline.

Insulin sensitivity
Estimation of insulin sensitivity and pancreatic beta-cell
function
Twenty four hours prior to LPS and 24 hours following
LPS, the insulin sensitivity index (SI) was derived from
the frequently sampled intravenous glucose tolerance
test (FSIGTT). We chose the FSIGTT as the method for
determining insulin sensitivity since the test also pro-
vides a measure of pancreatic beta-cell function via the
acute insulin response to glucose (AIRg), allowing simul-
taneous assessment for an effect of endotoxemia on the
beta-cell. The FSIGTT was conducted using the insulin-
modified approach as previously described [19]. SI was
derived from Bergman’s minimal model [14,20] using
MINMOD Millennium software [21]. Of the 10 subjects
(20 potential FSIGTT exams), we had complete data at
both visits in five subjects; two subjects had inconsistent
glucose administrations at one of the visits, two subjects
had inconsistent timing of insulin administration at one
of the visits and one subject had extreme outlier data
(>2.5 standard deviations for insulin and glucose). Com-
plementary estimates of insulin resistance and beta-cell
function, the homeostasis model assessment for insulin
resistance, HOMA-IR index [glucose (mmol/L) x insulin
(μU/mL)/22.5], and the HOMA for beta-cell function,
HOMA-B index [insulin (μU/mL) x 20/glucose (mmol/
L) - 3.5], were calculated independently of FSIGTT data
using fasting glucose and insulin values at 24 hours after
placebo and 24 hours after LPS.

Statistical analyses
Data are presented as mean and standard deviation for
continuous variables and frequencies for categorical vari-
ables. Baseline characteristics between males and females
were tested using t- tests for normal data and Kruskal-
Wallis testing for non-parametric data. The effect of LPS
on clinical parameters, plasma biomarkers, metabolic
measures and adipose tissue mRNA levels were tested
by repeated measures analysis of variance (ANOVA).
When significant global differences were found in
ANOVA, post hoc paired t-tests were used to compare
time-points. Data are presented in the figures as mean
and standard error of the mean. Analyses were per-
formed using STATA 12.0 (College Station, TX). Statis-
tical significance was defined as a p- value <0.05. We did
not correct for multiple testing; plasma cytokine data
represent our primary endpoints with additional traits
analyzed to provide complementary information regard-
ing the model impact on diverse cardio-metabolic and
biological pathways.

Results
Baseline characteristics of participants
Participants were healthy volunteers (50% male, 90%
Caucasian, age 22.7 ± 3.8) with normal blood pressure,
plasma lipoproteins and BMI as well as expected gender
differences in HDL-C, TG and CRP levels (Table 1). The
baseline glucose, SI and HOMA-IR measurements were
consistent with an insulin sensitive, glucose-tolerant
healthy sample.

Systemic inflammatory response to low-dose
endotoxemia
Low-dose endotoxemia induced a rapid and transient in-
duction of plasma TNF-alpha (Figure 1A) and IL-6
(Figure 1B) (p < 0.001 for both) both peaking at two
hours. There was a later increase in white blood cells
(Figure 1C) (peak four hours, p= 0.007), and subsequent
increase of the biomarker, CRP (Figure 1D) (highest level



Table 1 Baseline characteristics of Study Participants
(N= 10)

Mean (SD)

Age (years) 22.7 (3.8)

Males 20.4 (3.2)

Females 25.0 (2.9)

BMI (kg/m2) 24.0 (2.3)

Waist Circumference (m) 0.85 (0.06)

TNF-α (pg/mL) 0.9 (0.4)

IL-6 (pg/mL) 1.5 (0.8)

CRP (mg/L) 1.2 (1.4)

Males 0.5 (0.2)

Females 1.8 (1.7)

Systolic Blood Pressure (mmHg) 115.5 (7.2)

Diastolic Blood Pressure (mmHg) 69.1 (3.3)

Heart rate (bpm) 58.9 (9.9)

Temperature (K) 309.3 (255.4)

Total Cholesterol (mmol/L) 4.42 (0.83)

HDL-C (mmol/L) 1.54 (0.33)

Males 1.25 (0.09)

Females 1.83 (0.19)

Triglycerides (mmol/L) 0.89 (0.34)

Males 0.76 (0.25)

Females 1.03 (0.39)

LDL-C (mmol/L) 2.22 (0.56)

*FSIGTT-insulin sensitivity index
(SI, x 10-4 (μU/ml)-1•min-1)

3.4 (1.1) ^

†HOMA-IR insulin resistance index 10.4 (2.77)

(AIRg, μU•ml-1•min) 400.5 (152.6) ^

†HOMA-B beta-cell function index 1555.6 (931.3)

*FSIGTT = Frequently Sampled Intravenous Glucose Tolerance Test.
† HOMA=Homeostatic Model Assessment ^ In N= 5 subjects.
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during twenty four hour assay period at 24 h post LPS,
p < 0.001). These findings confirm the expected transient
but robust cytokine and biomarker response to low-dose
endotoxemia.
Clinical and counter-regulatory responses to low-dose
endotoxemia
Following low dose endotoxin or placebo administration,
there was no significant difference in subjective pain and
clinical symptoms as assessed by the McGill question-
naire Visual Analogue Scale (VAS) (within subject
ANOVA following LPS, p= 0.2) and Present Pain Inten-
sity (PPI) (within subject ANOVA following LPS,
p= 0.12). The slight trend in scores did not reach a sta-
tistically significant difference between LPS and placebo
and is unlikely to be of clinical significance when placed
in context of the typical flu-like symptomatic response
to moderate dose LPS (3 ng/kg) (Additional file 1: Figure
S1). In addition, we observed no significant differences
in body temperature (Figure 2A) or blood pressure (not
shown) following low dose LPS compared to placebo
while heart rate (Figure 2B) increased modestly at the
4–8 hour timeperiod following LPS (p= 0.04). There was
a trend toward small increases in growth hormone
(Figure 2C) (peak trend at 18 hours, p= 0.71) and serum
cortisol (Figure 2D) (peak change at six hours, p < 0.05)
following LPS. These data suggest a subclinical inflam-
matory response with very modest counter-regulatory
hormone activation.

Low-dose endotoxemia induces adipose tissue
inflammation
Low-dose endotoxemia induced modest inflammation in
adipose tissue with increase in mRNA levels of several
inflammatory genes known to modulate adipose and sys-
temic insulin resistance (Figure 3). Thus, adipose tissue
mRNA levels of IL-6 (peak 6-fold, ANOVA F= 27.5,
p < 0.001) and TNF-alpha (peak 1.8-fold, F = 2.9, p= 0.01)
increased with MCP-1 (peak 10-fold, F = 5.6, p < 0.01)
and fractalkine (CX3CL1) (peak 15-fold, F = 13.3,
p < 0.001), chemokines involved in monocyte and T-cell
recruitment and implicated in adipose tissue inflamma-
tion and insulin resistance [22,23]. Previously, we have
shown increases in levels of MCP1 [8] and fractalkine
[10] proteins in adipose tissue following higher doses of
LPS. Members of the suppressor of cytokine signaling
(SOCS) family of proteins inhibit tyrosine kinase recep-
tor signaling and are known to attenuate the insulin re-
ceptor and induce adipose insulin resistance [24,25].
Two of these, SOCS-1 (2.5-fold, p= 0.01) and SOCS-3
(3-fold, p < 0.01) mRNAs increased modestly following
low dose LPS. We did not observe significant changes in
anti- inflammatory cytokine IL-10 or in SOCS 2 and
SOCS 6 following LPS (data not shown).

Low-dose endotoxemia induces systemic insulin
resistance in humans
We previously demonstrated that higher dose (3 ng/Kg)
endotoxemia induced acute systemic IR without altering
pancreatic beta-cell function [8]. However, at that dose
the clinical and inflammatory changes were much
greater than that observed in obesity and metabolic syn-
drome. Here, we observed a more modest decrease in
insulin sensitivity at FSIGTT (n = 5) following low-dose
endotoxemia; insulin sensitivity (SI) declined by 21% fol-
lowing LPS compared to placebo (p < 0.05) (Figure 4A)
with no significant change in the AIRG index of pancre-
atic beta-cell function (placebo 463.02 ± 161.4 vs. LPS
405.45 ± 157.7 (μU•ml-1•min), p= 0.58). Consistent with
the FSIGT data, insulin resistance estimated by HOMA-
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Figure 1 Endotoxemia led to rapid increases in (A) TNF-α (**p<0.001 vs. placebo, peak 2 hours) and (B) IL-6 (**p<0.001 vs. placebo,
peak 2 hours). Endotoxemia also increased (C) white blood cell counts (*p< 0.05 vs. placebo, peak 4 hours) and (D) CRP levels (*p< 0.001 vs.
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IR in the FSIGTT sub-sample (n = 5) was 32% higher fol-
lowing LPS compared to placebo (p < 0.01) (Figure 4B)
while HOMA-B data, a surrogate of fasting pancreatic
beta-cell function, was unchanged (placebo 231.4 ± 140.1
vs. LPS 230.2 ± 84.0, p= 0.98). In the entire sample,
HOMA IR showed the same pattern of increase (placebo
1.49 ± 0.21 vs. LPS 1.77 ± 0.24, p= 0.02) as that observed
in the FSIGTT sub-sample with no change in HOMA-B
(placebo 235.4 ± 131.4 vs. LPS 232.2 ± 96.1, p= 0.9).
Overall, low dose endotoxemia produced systemic insu-
lin resistance following induction of specific adipose in-
flammatory pathways (cytokines, chemokines and SOCS)
that attenuate insulin signaling in vivo.

Discussion
In this double blind, placebo-controlled, random se-
quence crossover study of low-dose endotoxemia
designed to minimize clinical symptoms, we observed
several findings which support its potential use in the
study of cardiometabolic diseases: 1) a robust biochem-
ical systemic inflammatory response; 2) an almost
complete lack of clinical responses; 3) minimal counter
regulatory response in cortisol and growth hormone; 4)
significant modulation of cytokine, chemokine in adipose
tissue and insulin signaling pathways; and 5) induction
of systemic insulin resistance without evidence of pan-
creatic beta cell dysfunction.
Experimental endotoxemia, which stimulates toll-like

receptor 4 (TLR-4) signaling in vivo, may be an inform-
ative model to study cardio-metabolic traits in humans
[9,26]. Observational data show that sepsis and chronic
infection [27,28] induce insulin resistance, glucose in-
tolerance and lipid derangement resembling that
observed in obesity, type-2 diabetes and atherosclerosis.
In addition, we and others have shown that experimental
endotoxemia induces insulin resistance [8,9], adipose tis-
sue inflammation [10] and atherogenic lipoprotein
changes, including impaired reverse cholesterol transport
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[11,12,26,29,30]. In humans, endogenous TLR4 anti-
gens, including fatty acids [6] and oxidized lipids [31],
are generated in obese adipose and atherosclerosis
and may drive inflammatory cardio-metabolic dys-
function. Indeed, TLR4 is directly implicated in diet
induced obesity [6] and atherosclerosis through stud-
ies in TLR4 deficient mouse models. Thus, endotoxe-
mia has strong biological plausibility and activates
relevant pathways known to be perturbed in obesity,
diabetes and atherosclerosis.
We previously reported systemic inflammatory changes

in adipose tissue with development of a systemic insulin
resistance state [8] utilizing a moderate dose of endotoxin
(3 ng/kg). Despite its utility in studying inflammatory
effects on lipoproteins, metabolic function and adipose tis-
sue in human, this proof-of-principle model is supra-
physiologic and induces marked changes in systemic in-
flammatory markers compared to the current low-dose
model and compared to that observed chronically in
cardio-metabolic disease states. More importantly,
moderate-dose endotoxemia is associated with overt
clinical responses, including fever, tachycardia and
flu-like aches [8,10,15] which may limit wider applica-
tion in large-scale human clinical research. In the
current study, we demonstrate more subtle changes
in inflammatory and metabolic responses with an ab-
sence of clinical symptoms during low-dose endotoxe-
mia (LPS 0.6 ng/kg). Our findings support the use of
this low-dose model in studying clinically relevant
metabolic changes while providing a safe and scalable
approach for testing novel therapeutics and genomic
influences on cardio-metabolic disorders.
In moderate dose endotoxemia [8], we observed strong

induction of subcutaneous adipose TNF and IL-6 as well
as MCP-1, which is known to recruit CCR-2 expressing
monocytes, increase inflammatory-M1 adipose tissue
macrophage (ATM) and promote insulin resistance [22].
In support of this concept, we also observed increased
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mRNA levels of the macrophage marker, EMR1-F4/80
[32], in adipose tissue. Thus, endotoxemia may promote
adipose recruitment of macrophages, a characteristic of
adipose tissue in obese, insulin resistant humans33. In
our current study, we demonstrate that low dose endo-
toxemia produced a more subtle adipose tissue inflam-
mation. However, the increases in adipose cytokines and
chemokines as well as induction of SOCS were similar
to those observed in diet and obesity-related insulin re-
sistance [22,32-37]. Further, adipose changes coincided
with subsequent emergence of modest insulin resistance
which was less than that with higher dose endotoxin but
consistent with that in metabolic syndrome [38] and dia-
betes [19]. Thus, low dose endotoxemia also provides a
model of inducible adipose tissue inflammation permitting
specific interrogation of factors that modulate this import-
ant tissue component of insulin resistance.
Epidemiological studies have demonstrated a consist-

ent relationship between chronic low grade inflamma-
tion and states of obesity, insulin resistance, diabetes
and atherosclerosis. A challenge in understanding the
mechanism of these associations in humans however
remains hampered by a lack of a reliable in vivo model.
Here we show that an evoked inflammatory model to
simulate these states can be fruitful in identifying genes
and pathways activated in cardio-metabolic disease. We
acknowledge that the low dose endotoxemia model does
not reproduce the chronic pathophysiology of complex
cardio-metabolic diseases. It is, however, associated with
minimal clinical response and approximates acutely the
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inflammatory and metabolic responses of the chronic
disease states of interest. Furthermore, low-dose experi-
mental endotoxin induction of toll-like receptor 4 (TLR-4)
signaling in vivo is one well established model of
inflammation-induced metabolic disturbances in humans.
Sepsis and chronic infections in humans induce insulin re-
sistance, glucose intolerance and lipoprotein changes simi-
lar to the metabolic profile observed in obesity, type-2
diabetes and established coronary artery disease. The insu-
lin resistance, adipose inflammation and lipoprotein
changes observed acutely during experimental endotoxe-
mia resemble those observed chronically in cardio-
metabolic disease states. Finally, the role of TLR4 (the
endotoxin signaling receptor) is further suggested by
studies demonstrating reduced diet induced obesity
and atherosclerosis in TLR4 deficient mouse models.
Indeed, in addition to endotoxin, TLR4 may be acti-
vated by endogenous ligands that are increased in diet
induced obesity and insulin resistance. Of further
relevance to obesity and metabolic disease in vivo,
rodents raised in germ-free conditions are protected
from diet induced obesity [39]. Therefore, our model
of induced inflammation from acute bacterial expos-
ure is one of several models of inflammation evoked
metabolic disturbance in vivo and may not exactly
mimic all means of generating subclinical inflamma-
tion in obesity, diabetes and cardiovascular disease.
However, this model also offers the additional
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advantage in permitting direct assessment of the dir-
ectional impact of induced inflammation on metabolic
parameters such as insulin resistance. This avoids
confounding and reverse causation that are features
of observational studies where inflammatory changes
may result from risk factors and disease rather than
be causal.

Conclusion
In summary, we present a low dose human endotoxemia
model of inflammation which induces adipose tissue in-
flammation and systemic insulin resistance in the absence
of overt clinical response. Such a model has the potential
for broad and safe application in the study of novel thera-
peutics and genomic influences in cardio-metabolic
disease.
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