345 research outputs found

    Diboson-Jets and the Search for Resonant Zh Production

    Full text link
    New particles at the TeV-scale may have sizeable decay rates into boosted Higgs bosons or other heavy scalars. Here, we investigate the possibility of identifying such processes when the Higgs/scalar subsequently decays into a pair of W bosons, constituting a highly distinctive "diboson-jet." These can appear as a simple dilepton (plus MET) configuration, as a two-prong jet with an embedded lepton, or as a four-prong jet. We study jet substructure methods to discriminate these objects from their dominant backgrounds. We then demonstrate the use of these techniques in the search for a heavy spin-one Z' boson, such as may arise from strong dynamics or an extended gauge sector, utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with multiple boosted hadronic Zs and Ws tend to offer the best prospects for the highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays into a standard 125 GeV Higgs can be observed with 5-sigma significance for masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring nonstandard couplings, such as fermiophobic), the reach may improve to up to 2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure

    Hitting sbottom in natural SUSY

    Get PDF
    We compare the experimental prospects of direct stop and sbottom pair production searches at the LHC. Such searches for stops are of great interest as they directly probe for states that are motivated by the SUSY solution to the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY spectrum. Noting that sbottom searches are less experimentally challenging and scale up in reach directly with the improvement on b-tagging algorithms, we discuss the interplay of small TeV scale custodial symmetry violation with sbottom direct pair production searches as a path to obtaining strong sub-TeV constraints on stops in a natural SUSY scenario. We argue that if a weak scale natural SUSY spectrum does not exist within the reach of LHC, then hopes for such a spectrum for large regions of parameter space should sbottom out. Conversely, the same arguments make clear that a discovery of such a spectrum is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio

    Structure of Fat Jets at the Tevatron and Beyond

    Full text link
    Boosted resonances is a highly probable and enthusiastic scenario in any process probing the electroweak scale. Such objects when decaying into jets can easily blend with the cornucopia of jets from hard relative light QCD states. We review jet observables and algorithms that can contribute to the identification of highly boosted heavy jets and the possible searches that can make use of such substructure information. We also review previous studies by CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era" issue of The European Physical Journal C, we invite comments regarding contents of the review; v2 added references and institutional preprint number

    Probing natural SUSY from stop pair production at the LHC

    Full text link
    We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with s=14\sqrt{s}= 14 TeV and 100 fb1fb^{-1} luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Jet Dipolarity: Top Tagging with Color Flow

    Get PDF
    A new jet observable, dipolarity, is introduced that can distinguish whether a pair of subjets arises from a color singlet source. This observable is incorporated into the HEPTopTagger and is shown to improve discrimination between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version

    Simplified Models for LHC New Physics Searches

    Get PDF
    This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the "Topologies for Early LHC Searches" workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first ~50-500 pb-1 of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.Comment: 40 pages, 2 figures. This document is the official summary of results from "Topologies for Early LHC Searches" workshop (SLAC, September 2010). Supplementary material can be found at http://lhcnewphysics.or

    Search for single production of vector-like quarks decaying into Wb in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge +2/3 or a Y quark with charge −4/3, is performed in proton–proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb −1 and was produced with a centre-of-mass energy of √s = 8 TeV. This analysis targets Q→Wb decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant tt̄ background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the Q→Wb cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR(T→Wb)=0.5, whereas the expected limit is 1.10 TeV

    Search for flavour-changing neutral current top-quark decays to qZ in pp collision data collected with the ATLAS detector at √ s =8 TeV

    Get PDF
    A search for flavour-changing neutral current decays of a top quark to an uptype quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb¯, is presented. The analysis searches for top quark pair events in which one top quark decays to Wb, with the W boson decaying leptonically, and the other top quark decays to Hq. The search is based on pp collisions at √s=8 TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb−1. Data are analysed in the lepton-plus-jets final state, characterised by an isolated electron or muon and at least four jets. The search exploits the high multiplicity of b-quark jets characteristic of signal events, and employs a likelihood discriminant that uses the kinematic differences between the signal and the background, which is dominated by tt¯→WbWb decays. No significant excess of events above the background expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%) are derived for the t → Hc and t → Hu branching ratios respectively. The combination of this search with other ATLAS searches in the H → γγ and H → WW*, ττ decay modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper limits on the t → Hc and t → Hu branching ratios of 0.46% (0.25%) and 0.45% (0.29%) respectively. The corresponding combined observed (expected) upper limits on the |λtcH| and |λtuH| couplings are 0.13 (0.10) and 0.13 (0.10) respectively. These are the most restrictive direct bounds on tqH interactions measured so far
    corecore