583 research outputs found

    External validation of the DHAKA score and comparison with the current IMCI algorithm for the assessment of dehydration in children with diarrhoea: a prospective cohort study

    Get PDF
    BACKGROUND: Dehydration due to diarrhoea is a leading cause of child death worldwide, yet no clinical tools for assessing dehydration have been validated in resource-limited settings. The Dehydration: Assessing Kids Accurately (DHAKA) score was derived for assessing dehydration in children with diarrhoea in a low-income country setting. In this study, we aimed to externally validate the DHAKA score in a new population of children and compare its accuracy and reliability to the current Integrated Management of Childhood Illness (IMCI) algorithm. METHODS: DHAKA was a prospective cohort study done in children younger than 60 months presenting to the International Centre for Diarrhoeal Disease Research, Bangladesh, with acute diarrhoea (defined by WHO as three or more loose stools per day for less than 14 days). Local nurses assessed children and classified their dehydration status using both the DHAKA score and the IMCI algorithm. Serial weights were obtained and dehydration status was established by percentage weight change with rehydration. We did regression analyses to validate the DHAKA score and compared the accuracy and reliability of the DHAKA score and IMCI algorithm with receiver operator characteristic (ROC) curves and the weighted kappa statistic. This study was registered with ClinicalTrials.gov, number NCT02007733. FINDINGS: Between March 22, 2015, and May 15, 2015, 496 patients were included in our primary analyses. On the basis of our criterion standard, 242 (49%) of 496 children had no dehydration, 184 (37%) of 496 had some dehydration, and 70 (14%) of 496 had severe dehydration. In multivariable regression analyses, each 1-point increase in the DHAKA score predicted an increase of 0.6% in the percentage dehydration of the child and increased the odds of both some and severe dehydration by a factor of 1.4. Both the accuracy and reliability of the DHAKA score were significantly greater than those of the IMCI algorithm. INTERPRETATION: The DHAKA score is the first clinical tool for assessing dehydration in children with acute diarrhoea to be externally validated in a low-income country. Further validation studies in a diverse range of settings and paediatric populations are warranted. FUNDING: National Institutes of Health Fogarty International Center

    An Improved Calculation of the Non-Gaussian Halo Mass Function

    Full text link
    The abundance of collapsed objects in the universe, or halo mass function, is an important theoretical tool in studying the effects of primordially generated non-Gaussianities on the large scale structure. The non-Gaussian mass function has been calculated by several authors in different ways, typically by exploiting the smallness of certain parameters which naturally appear in the calculation, to set up a perturbative expansion. We improve upon the existing results for the mass function by combining path integral methods and saddle point techniques (which have been separately applied in previous approaches). Additionally, we carefully account for the various scale dependent combinations of small parameters which appear. Some of these combinations in fact become of order unity for large mass scales and at high redshifts, and must therefore be treated non-perturbatively. Our approach allows us to do this, and to also account for multi-scale density correlations which appear in the calculation. We thus derive an accurate expression for the mass function which is based on approximations that are valid over a larger range of mass scales and redshifts than those of other authors. By tracking the terms ignored in the analysis, we estimate theoretical errors for our result and also for the results of others. We also discuss the complications introduced by the choice of smoothing filter function, which we take to be a top-hat in real space, and which leads to the dominant errors in our expression. Finally, we present a detailed comparison between the various expressions for the mass functions, exploring the accuracy and range of validity of each.Comment: 28 pages, 13 figures; v2: text reorganized and some figured modified for clarity, results unchanged, references added. Matches version published in JCA

    External validation of the DHAKA score and comparison with the current IMCI algorithm for the assessment of dehydration in children with diarrhoea: a prospective cohort study

    Get PDF
    Background Dehydration due to diarrhoea is a leading cause of child death worldwide, yet no clinical tools for assessing dehydration have been validated in resource-limited settings. The Dehydration: Assessing Kids Accurately (DHAKA) score was derived for assessing dehydration in children with diarrhoea in a low-income country setting. In this study, we aimed to externally validate the DHAKA score in a new population of children and compare its accuracy and reliability to the current Integrated Management of Childhood Illness (IMCI) algorithm. Methods DHAKA was a prospective cohort study done in children younger than 60 months presenting to the International Centre for Diarrhoeal Disease Research, Bangladesh, with acute diarrhoea (defi ned by WHO as three or more loose stools per day for less than 14 days). Local nurses assessed children and classifi ed their dehydration status using both the DHAKA score and the IMCI algorithm. Serial weights were obtained and dehydration status was established by percentage weight change with rehydration. We did regression analyses to validate the DHAKA score and compared the accuracy and reliability of the DHAKA score and IMCI algorithm with receiver operator characteristic (ROC) curves and the weighted κ statistic. This study was registered with ClinicalTrials.gov, number NCT02007733. Findings Between March 22, 2015, and May 15, 2015, 496 patients were included in our primary analyses. On the basis of our criterion standard, 242 (49%) of 496 children had no dehydration, 184 (37%) of 496 had some dehydration, and 70 (14%) of 496 had severe dehydration. In multivariable regression analyses, each 1-point increase in the DHAKA score predicted an increase of 0·6% in the percentage dehydration of the child and increased the odds of both some and severe dehydration by a factor of 1·4. Both the accuracy and reliability of the DHAKA score were signifi cantly greater than those of the IMCI algorithm. Interpretation The DHAKA score is the fi rst clinical tool for assessing dehydration in children with acute diarrhoea to be externally validated in a low-income country. Further validation studies in a diverse range of settings and paediatric populations are warranted

    Impaired perception of facial motion in autism spectrum disorder

    Get PDF
    Copyright: © 2014 O’Brien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Facial motion is a special type of biological motion that transmits cues for socio-emotional communication and enables the discrimination of properties such as gender and identity. We used animated average faces to examine the ability of adults with autism spectrum disorders (ASD) to perceive facial motion. Participants completed increasingly difficult tasks involving the discrimination of (1) sequences of facial motion, (2) the identity of individuals based on their facial motion and (3) the gender of individuals. Stimuli were presented in both upright and upside-down orientations to test for the difference in inversion effects often found when comparing ASD with controls in face perception. The ASD group’s performance was impaired relative to the control group in all three tasks and unlike the control group, the individuals with ASD failed to show an inversion effect. These results point to a deficit in facial biological motion processing in people with autism, which we suggest is linked to deficits in lower level motion processing we have previously reported

    Ultraweak excitations of the quantum vacuum as physical models of gravity

    Full text link
    It has been argued by several authors that the space-time curvature observed in gravitational fields, and the same idea of forms of physical equivalence different from the Lorentz group, might emerge from the dynamical properties of the physical flat-space vacuum in a suitable hydrodynamic limit. To explore this idea, one could start by representing the physical vacuum as a Bose condensate of elementary quanta and look for vacuum excitations that, on a coarse grained scale, resemble the Newtonian potential. In this way, it is relatively easy to match the weak-field limit of classical General Relativity or of some of its possible variants. The idea that Bose condensates can provide various forms of gravitational dynamics is not new. Here, I want to emphasize some genuine quantum field theoretical aspects that can help to understand i) why infinitesimally weak, 1/r interactions can indeed arise from the same physical vacuum of electroweak and strong interactions and ii) why, on a coarse-grained scale, their dynamical effects can be re-absorbed into an effective curved metric structure.Comment: 30 pages, no figures, accepted by Classical and Quantum Gravit

    Haloes gone MAD: The Halo-Finder Comparison Project

    Full text link
    [abridged] We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends (FOF), spherical-overdensity (SO) and phase-space based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allows halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Via a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high resolution cosmological volume we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity, and peak of the rotation curve).Comment: 27 interesting pages, 20 beautiful figures, and 4 informative tables accepted for publication in MNRAS. The high-resolution version of the paper as well as all the test cases and analysis can be found at the web site http://popia.ft.uam.es/HaloesGoingMA

    Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance

    Get PDF
    Determine if antiretroviral (ARV) regimens with good central nervous system (CNS) penetration control HIV in cerebrospinal fluid (CSF) and improve cognition

    Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets

    Get PDF
    We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    corecore