3,693 research outputs found

    The Place of Quebec in North America

    Get PDF

    Enzymatic creatinine assays allowestimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation

    Full text link
    The National Kidney Disease Education Program group demonstrated that MDRD equation is sensitive to creatinine measurement error, particularly at higher glomerular filtration rates. Thus, MDRD-based eGFR above 60 mL/min/1.73 m2 should not be reported numerically. However, little is known about the impact of analytical error on CKD-EPI-based estimates. This study aimed at assessing the impact of analytical characteristics (bias and imprecision) of 12 enzymatic and 4 compensated Jaffe previously characterized creatinine assays on MDRD and CKD-EPI eGFR. In a simulation study, the impact of analytical error was assessed on a hospital population of 24 084 patients. Ability using each assay to correctly classify patients according to chronic kidney disease (CKD) stages was evaluated. For eGFR between 60 and 90 mL/min/1.73 m2, both equations were sensitive to analytical error. Compensated Jaffe assays displayed high bias in this range and led to poorer sensitivity/specificity for classification according to CKD stages than enzymatic assays. As compared to MDRD equation, CKD-EPI equation decreases impact of analytical error in creatinine measurement above 90 mL/min/1.73 m2. Compensated Jaffe creatinine assays lead to important errors in eGFR and should be avoided. Accurate enzymatic assays allow estimation of eGFR until 90 mL/min/1.73 m2 with MDRD and 120 mL/min/1.73 m2 with CKD-EPI equation.Peer reviewe

    Paper Session II-B - The Advanced Camera for the Hubble Space Telescope

    Get PDF
    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) will have a high throughput, wide field, optical and I-band camera (WFC), a critically sampled high resolution camera (HRC), and a high throughput, moderate field of view far ultraviolet, solar-blind camera (SBC). The key characteristics of the ACS are listed in Table 1. The throughputs include the geometrical, scattering, and reflectivity losses from the HST optical telescope assembly (Burrows, HST OTA Handbook). Two figures are listed for the ACS efficiencies. The first is the efficiency using the quantum efficiency (QE) of the Scientific Imaging Technologies (SITe) 2K x 4K WFC CCDs and the SITe HRC 1K ´ 1K CCDs selected for the first build of the flight cameras. The second and higher efficiencies are those achieved with SITe CCDs processed and anti-reflection coated at Steward Observatory by Dr. Michael Lesser. We plan to use these better CCDs for the second build of the flight cameras

    The ATLAS3D project - XXVII : Cold gas and the colours and ages of early-type galaxies

    Get PDF
    Date of Acceptance: 16/12/2013We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ∼ 0.06 and H2 masses up to M(H2)/M* ∼ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ∼50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour–magnitude diagramsPeer reviewedFinal Accepted Versio

    Splicing factor and exon profiling across human tissues

    Get PDF
    It has been shown that alternative splicing is especially prevalent in brain and testis when compared to other tissues. To test whether there is a specific propensity of these tissues to generate splicing variants, we used a single source of high-density microarray data to perform both splicing factor and exon expression profiling across 11 normal human tissues. Paired comparisons between tissues and an original exon-based statistical group analysis demonstrated after extensive RT-PCR validation that the cerebellum, testis, and spleen had the largest proportion of differentially expressed alternative exons. Variations at the exon level correlated with a larger number of splicing factors being expressed at a high level in the cerebellum, testis and spleen than in other tissues. However, this splicing factor expression profile was similar to a more global gene expression pattern as a larger number of genes had a high expression level in the cerebellum, testis and spleen. In addition to providing a unique resource on expression profiling of alternative splicing variants and splicing factors across human tissues, this study demonstrates that the higher prevalence of alternative splicing in a subset of tissues originates from the larger number of genes, including splicing factors, being expressed than in other tissues

    A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope

    Get PDF
    Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to study the gamma-ray emission towards 13 globular clusters. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7<Γ<1.4)(0.7 < \Gamma <1.4) and clear evidence for an exponential cut-off in the range 1.0-2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0<Γ<1.7)(1.0 < \Gamma < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600-4700 MSPs in Galactic globular clusters, commensurate with previous estimates. The observation of high-energy gamma-ray emission from a globular cluster thus provides a reliable independent method to assess their millisecond pulsar populations that can be used to make constraints on the original neutron star X-ray binary population, essential for understanding the importance of binary systems in slowing the inevitable core collapse of globular clusters.Comment: Accepted for publication in A&A. Corresponding authors: J. Kn\"odlseder, N. Webb, B. Pancraz

    Impact of Semantic Relatedness on Associative Memory: An ERP Study

    Get PDF
    Encoding and retrieval processes in memory for pairs of pictures are thought to be influenced by inter-item similarity and by features of individual items. Using Event-Related Potentials (ERP), we aimed to identify how these processes impact on both the early mid-frontal FN400 and the Late Positive Component (LPC) potentials during associative retrieval of pictures. Twenty young adults undertook a sham task, using an incidental encoding of semantically related and unrelated pairs of drawings. At test, we conducted a recognition task in which participants were asked to identify target identical pairs of pictures, which could be semantically related or unrelated, among new and rearranged pairs. We observed semantic (related and unrelated pairs) and condition effects (old, rearranged and new pairs) on the early mid-frontal potential. First, a lower amplitude was shown for identical and rearranged semantically related pairs, which might reflect a retrieval process driven by semantic cues. Second, among semantically unrelated pairs, we found a larger negativity for identical pairs, compared to rearranged and new ones, suggesting additional retrieval processing that focuses on associative information. We also observed an LPC old/new effect with a mid-parietal and a right occipito-parietal topography for semantically related and unrelated old pairs, demonstrating a recollection phenomenon irrespective of the degree of association. These findings suggest that associative recognition using visual stimuli begins at early stages of retrieval, and differs according to the degree of semantic relatedness among items. However, either strategy may ultimately lead to recollection processes
    corecore