62 research outputs found
Virial masses of late-type galaxies from the SDSS DR16
Motivated by the challenges of calculating the dynamical masses of late-type galaxies (LTGs) and the enormous amount of data from the Sloan Digital Sky Survey (SDSS), we calculate virial masses of a sample of approximately 126 000 LTGs from the sixteenth data release of the SDSS. The virial mass estimations were made considering Newtonian mechanics, virial equilibrium and velocity dispersion from stars and gas. The procedure gave as a result seven mass estimations for each galaxy. The calculated masses were calibrated using a sample of spiral galaxies with velocity rotation curves. Considering the results from the calibration, we find that the correlation between virial and dynamical (rotation curve) masses is stronger for high inclination values. Therefore, the calibration relies more on the available data for higher inclination angle galaxies. We also show that if we have a heterogeneous sample of galaxies one must take into consideration the size and colour of these galaxies by using the following variables: Sersic index n, concentration index, and colour of the stars. For relatively smaller and bluer LTGs, the gas velocity dispersion provides a more consistent mass calculation, while for LTGs that are relatively larger and redder the stellar velocity dispersion provides a better correlated mass calculation.Fil: Nigoche Netro, A.. Universidad de Guadalajara; México. Instituto de Astronomía y Meteorologia de la Universidad de Guadalajara; MéxicoFil: De La Fuente, E.. Universidad de Guadalajara; México. University of Tokyo; JapónFil: Diaz, Ruben Joaquin. United States Gemini Office; Estados Unidos. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Agüero, Maria Paz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; ArgentinaFil: Kemp, S. N.. Instituto de Astronomía y Meteorologia de la Universidad de Guadalajara; MéxicoFil: Marquez Lugo, R. A.. Instituto de Astronomía y Meteorologia de la Universidad de Guadalajara; MéxicoFil: Lagos, P.. Centro de Astrofísica Da Universidade Do Porto; PortugalFil: Ruelas Mayorga, A.. Universidad Nacional Autónoma de México; MéxicoFil: López Contreras, N. L.. Instituto de Astronomía y Meteorologia de la Universidad de Guadalajara; Méxic
Differential dorso-ventral distributions of Kv4.2 and HCN proteins confer distinct integrative properties to hippocampal CA1 pyramidal cell distal dendrites.
The dorsal and ventral regions of the hippocampus perform different functions. Whether the integrative properties of hippocampal cells reflect this heterogeneity is unknown. We focused on dendrites where most synaptic input integration takes place. We report enhanced backpropagation and theta resonance and decreased summation of synaptic inputs in ventral versus dorsal CA1 pyramidal cell distal dendrites. Transcriptional Kv4.2 down-regulation and post-transcriptional hyperpolarization-activated cyclic AMP-gated channel (HCN1/2) up-regulation may underlie these differences, respectively. Our results reveal differential dendritic integrative properties along the dorso-ventral axis, reflecting diverse computational needs
Oral aniracetam treatment in C57BL/6J mice without pre-existing cognitive dysfunction reveals no changes in learning, memory, anxiety or stereotypy [version 3; referees: 2 approved, 1 approved with reservations]
Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects. Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction
Oral aniracetam treatment in C57BL/6J mice without pre-existing cognitive dysfunction reveals no changes in learning, memory, anxiety or stereotypy [version 2; referees: 2 approved, 1 approved with reservations]
Background: The piracetam analog, aniracetam, has recently received attention for its cognition enhancing potential, with minimal reported side effects. Previous studies report the drug to be effective in both human and non-human models with pre-existing cognitive dysfunction, but few studies have evaluated its efficacy in healthy subjects. A previous study performed in our laboratory found no cognitive enhancing effects of oral aniracetam administration 1-hour prior to behavioral testing in naïve C57BL/6J mice. Methods: The current study aims to further evaluate this drug by administration of aniracetam 30 minutes prior to testing in order to optimize any cognitive enhancing effects. In this study, all naïve C57BL/6J mice were tested in tasks of delayed fear conditioning, novel object recognition, rotarod, open field, elevated plus maze, and marble burying. Results: Across all tasks, animals in the treatment group failed to show enhanced learning when compared to controls. Conclusions: These results provide further evidence suggesting that aniracetam conveys no therapeutic benefit to subjects without pre-existing cognitive dysfunction
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
State of the climate in 2018
In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Hippocampal Upregulation of Complement Component C3 in Response to Lipopolysaccharide Stimuli in a Model of Fragile-X Syndrome
The complement system is part of the innate immune system and has been shown to be altered in autism spectrum disorder (ASD). Fragile-X syndrome (FXS) is the main genetic cause of ASD and studies suggest a dysregulation in the immune system in patients with the disorder. To assess if an animal model of FXS presents with altered complement signaling, we treated male Fmr1 knockout (KO) mice with lipopolysaccharide (LPS) and collected the hippocampus 24 h later. Assessment of the expression of the complement genes C1q, C3, and C4 identified the upregulation of C3 in both wild-type (WT) and knockout mice. Levels of C3 also increased in both genotypes. Analysis of the correlation between the expression of C3 and the cytokines IL-6, IL-1β, and TNF-α identified a different relationship between the expression of the genes in Fmr1 KO when compared to WT mice. Our findings did not support our initial hypotheses that the lack of the FMR1 gene would alter complement system signaling, and that the induction of the complement system in response to LPS in Fmr1 KO mice differed from wild-type conspecifics
Kv4.2 knockout mice display learning and memory deficits in the Lashley maze [version 2; referees: 2 approved]
Background: Potassium channels have been shown to be involved in neural plasticity and learning. Kv4.2 is a subunit of the A-type potassium channel. Kv4.2 channels modulate excitability in the dendrites of pyramidal neurons in the cortex and hippocampus. Deletion of Kv4.2 results in spatial learning and conditioned fear deficits; however, previous studies have only examined deletion of Kv4.2 in aversive learning tests. Methods: For the current study, we used the Lashley maze as an appetitive learning test. We examined Kv4.2 wildtype (WT) and knockout (KO) mice in the Lashley maze over 4 days during adulthood. The first day consisted of habituating the mice to the maze. The mice then received five trials per day for the next 3 days. The number of errors and the time to the goal box was recorded for each trial. The goal box contained a weigh boat with an appetitive reward (gelatin with sugar). There was an intertrial interval of 15 minutes. Results: We found that Kv4.2 KO mice committed more errors across the trials compared to the WT mice p<0.001. There was no difference in the latency to find the goal box over the period. Discussion: Our finding that deletion of Kv4.2 resulted in more errors in the Lashley maze across 15 trials contribute to a growing body of evidence that Kv4.2 channels are significantly involved in learning and memory
Kv4.2 knockout mice display learning and memory deficits in the Lashley maze [version 1; referees: 2 approved]
Background: Potassium channels have been shown to be involved in neural plasticity and learning. Kv4.2 is a subunit of the A-type potassium channel. Kv4.2 channels modulate excitability in the dendrites of pyramidal neurons in the cortex and hippocampus. Deletion of Kv4.2 results in spatial learning and conditioned fear deficits; however, previous studies have only examined deletion of Kv4.2 in aversive learning tests. Methods: For the current study, we used the Lashley maze as an appetitive learning test. We examined Kv4.2 wildtype (WT) and knockout (KO) mice in the Lashley maze over 4 days during adulthood. The first day consisted of habituating the mice to the maze. The mice then received five trials per day for the next 3 days. The number of errors and the time to the goal box was recorded for each trial. The goal box contained a weigh boat with an appetitive reward (gelatin with sugar). There was an intertrial interval of 15 minutes. Results: We found that Kv4.2 KO mice committed more errors across the trials compared to the WT mice p<0.001. There was no difference in the latency to find the goal box over the period. Discussion: Our finding that deletion of Kv4.2 resulted in more errors in the Lashley maze across 15 trials contribute to a growing body of evidence that Kv4.2 channels are significantly involved in learning and memory
- …