3,441 research outputs found

    SoniBand: Understanding the Effects of Metaphorical Movement Sonifications on Body Perception and Physical Activity

    Get PDF
    Negative body perceptions are a major predictor of physical inactivity, a serious health concern. Sensory feedback can be used to alter such body perceptions; movement sonification, in particular, has been suggested to affect body perception and levels of physical activity (PA) in inactive people. We investigated how metaphorical sounds impact body perception and PA. We report two qualitative studies centered on performing different strengthening/flexibility exercises using SoniBand, a wearable that augments movement through different sounds. The first study involved physically active participants and served to obtain a nuanced understanding of the sonifications’ impact. The second, in the home of physically inactive participants, served to identify which effects could support PA adherence. Our findings show that movement sonification based on metaphors led to changes in body perception (e.g., feeling strong) and PA (e.g., repetitions) in both populations, but effects could differ according to the existing PA-level. We discuss principles for metaphor-based sonification design to foster PA

    Effects of pitch and musical sounds on body-representations when moving with sound

    Get PDF
    The effects of music on bodily movement and feelings, such as when people are dancing or engaged in physical activity, are well-documented—people may move in response to the sound cues, feel powerful, less tired. How sounds and bodily movements relate to create such effects? Here we deconstruct the problem and investigate how different auditory features affect people’s body-representation and feelings even when paired with the same movement. In three experiments, participants executed a simple arm raise synchronised with changing pitch in simple tones (Experiment 1), rich musical sounds (Experiment 2) and within different frequency ranges (Experiment 3), while we recorded indirect and direct measures on their movement, body-representations and feelings. Changes in pitch influenced people’s general emotional state as well as the various bodily dimensions investigated—movement, proprioceptive awareness and feelings about one’s body and movement. Adding harmonic content amplified the differences between ascending and descending sounds, while shifting the absolute frequency range had a general effect on movement amplitude, bodily feelings and emotional state. These results provide new insights in the role of auditory and musical features in dance and exercise, and have implications for the design of sound-based applications supporting movement expression, physical activity, or rehabilitation

    Estudi computacional de les interaccions moleculars entre l'àcid itacònic i compostos antimalàrics: un pas important per al disseny racional de sistemes d'alliberament controlat de fàrmacs

    Get PDF
    Las interacciones moleculares entre cuatro antimaláricos: cloroquina, primaquina, quinina y amodiaquina, con un dímero del ácido itacónico, fueron estudiadas a través de la teoría del funcional de la densidad usando B3LYP/++6-31G(d,p) y el modelo CPCM para el solvente. Cloroquina, primaquina y quinina presentan interacción apreciable con el dímero del ácido itacónico, con energías de interacción en el rango de -17 hasta -6,7 kcal/mol, de naturaleza exotérmica, a través de un proceso de fisisorción. El valor positivo de la energía de interacción para la amodiaquina sugiere una menor probabilidad de que este sea adsorbido por un dímero de ácido itacónico. Los cálculos NBO y la aplicación de la teoría de perturbación de segundo orden indican transferencia de carga desde los compuestos cloroquina y primaquina. Adicionalmente, los resultados sugieren que las interacciones principales son de naturaleza polar, donde los enlaces de hidrógenos juegan un rol principal. Los resultados encontrados a través del método CPCM indican que los complejos entre el dímero de ácido itacónico con cloroquina y primaquina son bastante estables en disolución acuosa; además presentan valores adecuados de LogP y momento dipolar, indicando alta la interacción con el solvente que permitiría el hinchamiento y la liberación controlada de estos fármacos.The molecular interactions between four widely used antimalaric i.e, chloroquine, primaquine, quinine and amodiaquine, with an itaconic acid dimer as a hydrogel model, have been studied by the mean of the Density Functional Theory calculation in both, vacuum and water environment, using B3LYP/++6-31G(d,p) basis set and PCM model of solvent. Chloroquine, primaquine, and quinine show a suitable interaction with the itaconic acid dimer, with binding energy into the range of -17 to -6.7 kcal/ mol. These values of binding energies suggest the formation of stable and exothermic complexes in the range of physisorption energy. By contrast, the positive value of binding energy for amodiaquine indicates a little chance to be absorbed into the hydrogel polymer. The NBO calculation and the second order perturbation theory indicate a strong charge-transference from chloroquine and primaquine to itaconic acid dimer. In addition, these results suppose the interactions are mainly polar in nature where the hydrogen bond plays a pivotal role in complex stabilization. On the other hand, the CPCM calculations suggest the chloroquine and primaquine complex are stables, with suitable values of both, LogP and dipole momentum implying the swelling of these complex in water and the eventual drugs controlled-delivery from the polymeric matrix

    The star formation histories of galaxies in the Sloan Digital Sky Survey

    Full text link
    We present the results of a MOPED analysis of ~3 x 10^5 galaxy spectra from the Sloan Digital Sky Survey Data Release Three (SDSS DR3), with a number of improvements in data, modelling and analysis compared with our previous analysis of DR1. The improvements include: modelling the galaxies with theoretical models at a higher spectral resolution of 3\AA; better calibrated data; an extended list of excluded emission lines, and a wider range of dust models. We present new estimates of the cosmic star formation rate, the evolution of stellar mass density and the stellar mass function from the fossil record. In contrast to our earlier work the results show no conclusive peak in the star formation rate out to a redshift around 2 but continue to show conclusive evidence for `downsizing' in the SDSS fossil record. The star formation history is now in good agreement with more traditional instantaneous measures. The galaxy stellar mass function is determined over five decades of mass, and an updated estimate of the current stellar mass density is presented. We also investigate the systematic effects of changes in the stellar population modelling, the spectral resolution, dust modelling, sky lines, spectral resolution and the change of data set. We find that the main changes in the results are due to the improvements in the calibration of the SDSS data, changes in the initial mass function and the theoretical models used.Comment: replaced to match accepted version in MNRA

    Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity.</p> <p>Results</p> <p>We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells.</p> <p>Conclusions</p> <p>Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.</p

    A preliminary overview of skin and skeletal diseases and traumata in small cetaceans from South American waters

    Get PDF
    We succinctly review and document new cases of diseases of the skin and the skeletal system and external traumata in cetaceans from Ecuador, Colombia, Peru, Chile, Argentina, Uruguay, Brazil, and Venezuela. The survey revealed 590 cases diagnosed with a significant pathology, injury or malformation on a total of 7635 specimens of 12 odontocete species examined or observed in 1984-2007. Tattoo skin disease (TSD), lobomycosis-like disease (LLD) and cutaneous diseases of unknown aetiology seem to be emerging in several populations. TSD was confirmed in eight species from the SE Pacific and SW Atlantic. LLD affected only inshore Tursiops truncatus but was found in four tropical countries, namely Colombia, Ecuador, Peru and Brazil. Lobomycosis was confirmed by histology in one male from the Tramandaí estuary, southern Brazil. All LLD-affected specimens were encountered in the vicinity of major ports and cities and a possible association with chemical or organic water pollution is suspected. Whitish velvety cutaneous marks associated with scars occurred in inshore T. truncatus, Sotalia guianensis and Pseudorca crassidens. Large, rounded lesions were seen in a Cephalorhynchus eutropia calf and a C. commersonii. Cutaneous wounds and scars as well as body traumata possibly related to net entanglements and boat collisions were observed in 73 delphinids and Phocoena spinipinnis. Traumatic injuries resulted in the partial or complete amputation and other disfiguring scars of appendages in 17 cases. Fractures of the skull, ribs and vertebrae thought to be caused by fisheries-related interactions or boat collisions were seen in single individuals of Delphinus capensis, Lagenorhynchus obscurus, T. truncatus, S. guianensis and Ziphius cavirostris. Prevalence of osteopathology in small cetaceans from Peru, Brazil and Venezuela ranged widely, from 5.4% to 69.1%. In four species from Peru, lytic cranial lesions were the most frequently observed disease (5.4%-42.9%), followed by hyperostosis and ankylosing spondylitis in offshore (31%, n=42) and inshore (15.4%, n=26) T. truncatus. Fractures and other bone traumata were present in 47.2% of 53 axial skeletons of S. guianensis from the northern Rio de Janeiro state (Brazil) in 1987-1998. A high prevalence (48.4%, n=31) of, apparently congenital, malformations of cervical vertebrae, observed in a 2001-2006 sample, may be explained by a hypothetical genetic bottleneck in this population. Malformations with deficient ossification would clearly increase susceptibility for fractures. This study demonstrates the utility of a continent-wide analysis to discern epizootiological trends more readily than any local study could provide. Secondly, it underscores the need for focussed research on the effects of human activities on the spread of diseases in cetaceans, particularly in near-shore populations that utilize highly degraded coastal habitats

    MHC class I-related chain A and B ligands are differentially expressed in human cervical cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural killer (NK) cells are an important resource of the innate immune system directly involved in the spontaneous recognition and lysis of virus-infected and tumor cells. An exquisite balance of inhibitory and activating receptors tightly controls the NK cell activity. At present, one of the best-characterized activating receptors is NKG2D, which promotes the NK-mediated lysis of target cells by binding to a family of cell surface ligands encoded by the MHC class I chain-related (MIC) genes, among others. The goal of this study was to describe the expression pattern of MICA and MICB at the molecular and cellular levels in human cervical cancer cell lines infected or not with human papillomavirus, as well as in a non-tumorigenic keratinocyte cell line.</p> <p>Results</p> <p>Here we show that MICA and MICB exhibit differential expression patterns among HPV-infected (SiHa and HeLa) and non-infected cell lines (C33-A, a tumor cell line, and HaCaT, an immortalized keratinocyte cell line). Cell surface expression of MICA was higher than cell surface expression of MICB in the HPV-positive cell lines; in contrast, HPV-negative cells expressed lower levels of MICA. Interestingly, the MICA levels observed in C33-A cells were overcome by significantly higher MICB expression. Also, all cell lines released higher amounts of soluble MICB than of soluble MICA into the cell culture supernatant, although this was most pronounced in C33-A cells. Additionally, Real-Time PCR analysis demonstrated that MICA was strongly upregulated after genotoxic stress.</p> <p>Conclusions</p> <p>This study provides evidence that even when MICA and MICB share a high degree of homology at both genomic and protein levels, differential regulation of their expression and cell surface appearance might be occurring in cervical cancer-derived cells.</p

    Comparing six evolutionary population synthesis models through spectral synthesis on galaxies

    Full text link
    We compare six popularly used evolutionary population synthesis (EPS) models (BC03, CB07, Ma05, GALEV, GRASIL, Vazdekis/Miles) through fitting the full optical spectra of six representative types of galaxies (star-forming and composite galaxies, Seyfert 2s, LINERs, E+A and early-type galaxies), which are taken from the Sloan Digital Sky Survey (SDSS). Throughout our paper, we use the simple stellar populations (SSPs) from each EPS model and the software STARLIGHT to do our fits. Our main results are: Using different EPS models the resulted numerical values of contributed light fractions change obviously, even though the dominant populations are consistent. The stellar population synthesis does depend on the selection of age and metallicity, while it does not depend on the stellar evolution track much. The importance of young populations decreases from star-forming, composite, Seyfert 2, LINER to early-type galaxies, and E+A galaxies lie between composite galaxies and Seyfert 2s in most cases. We conclude that different EPS models do derive different stellar populations, so that it is not reasonable to directly compare stellar populations estimated from different EPS models. To get reliable results, we should use the same EPS model for the compared samples.Comment: 13 pages, 4 figures, accepted for publication in A&

    The VIMOS VLT Deep Survey: Tracing the galaxy stellar mass assembly history over the last 8Gyr

    Get PDF
    We selected a mass-limited sample of 4048 objects from the VIMOS VLT Deep Survey in the redshift interval 0.5<z<1.3. We used the amplitude of the 4000 Balmer break (Dn4000) to separate the galaxy population and the EW[OII]3727 line as proxy for the star formation activity. We discuss to what extent stellar mass drives galaxy evolution, showing for the first time the interplay between stellar ages and stellar masses over the past 8Gyr. Low-mass galaxies have small Dn4000 and at increasing stellar mass, the galaxy distribution moves to higher Dn4000 values as observed in the local Universe. As cosmic time goes by, we witness an increasing abundance of massive spectroscopically ET systems at the expense of the LT systems. This spectral transformation is a process started at early epochs and continuing efficiently down to the local Universe. This is confirmed by the evolution of our type-dependent stellar mass function. The underlying stellar ages of LT galaxies apparently do not show evolution, likely as a result of a continuous formation of new stars. All star formation activity indicators consistently point towards a star formation history peaked in the past for massive galaxies, with little or no residual star formation taking place in the most recent epochs. The activity and efficiency of forming stars are mechanisms that depend on stellar mass, and the mass assembly becomes progressively less efficient in massive systems as time elapses. The concepts of star formation downsizing and mass assembly downsizing describe a single scenario that has a top-down evolutionary pattern. The role of (dry) merging events seems to be only marginal at z<1.3, as our estimated efficiency in stellar mass assembly can possibly account for the progressive accumulation of passively evolving galaxies.Comment: Accepted for pubblication in A&A, 14 pages, 5 figure
    corecore