355 research outputs found

    Interface depinning versus absorbing-state phase transitions

    Get PDF
    According to recent numerical results from lattice models, the critical exponents of systems with many absorbing states and an order parameter coupled to a non-diffusive conserved field coincide with those of the linear interface depinning model within computational accuracy. In this paper the connection between absorbing state phase transitions and interface pinning in quenched disordered media is investigated. For that, we present a mapping of the interface dynamics in a disordered medium into a Langevin equation for the active-site density and show that a Reggeon-field-theory like description, coupled to an additional non-diffusive conserved field, appears rather naturally. Reciprocally, we construct a mapping from a discrete model belonging in the absorbing state with-a-conserved-field class to a discrete interface equation, and show how a quenched disorder is originated. We discuss the character of the possible noise terms in both representations, and overview the critical exponent relations. Evidence is provided that, at least for dimensions larger that one, both universality classes are just two different representations of the same underlying physics.Comment: 8 page

    Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder

    Full text link
    We study both analytically and numerically metastability and nucleation in a two-dimensional nonequilibrium Ising ferromagnet. Canonical equilibrium is dynamically impeded by a weak random perturbation which models homogeneous disorder of undetermined source. We present a simple theoretical description, in perfect agreement with Monte Carlo simulations, assuming that the decay of the nonequilibrium metastable state is due, as in equilibrium, to the competition between the surface and the bulk. This suggests one to accept a nonequilibrium "free-energy" at a mesoscopic/cluster level, and it ensues a nonequilibrium "surface tension" with some peculiar low-T behavior. We illustrate the occurrence of intriguing nonequilibrium phenomena, including: (i) Noise-enhanced stabilization of nonequilibrium metastable states; (ii) reentrance of the limit of metastability under strong nonequilibrium conditions; and (iii) resonant propagation of domain walls. The cooperative behavior of our system may also be understood in terms of a Langevin equation with additive and multiplicative noises. We also studied metastability in the case of open boundaries as it may correspond to a magnetic nanoparticle. We then observe burst-like relaxation at low T, triggered by the additional surface randomness, with scale-free avalanches which closely resemble the type of relaxation reported for many complex systems. We show that this results from the superposition of many demagnetization events, each with a well- defined scale which is determined by the curvature of the domain wall at which it originates. This is an example of (apparent) scale invariance in a nonequilibrium setting which is not to be associated with any familiar kind of criticality.Comment: 26 pages, 22 figure

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive

    Universal scaling behavior of non-equilibrium phase transitions

    Full text link
    One of the most impressive features of continuous phase transitions is the concept of universality, that allows to group the great variety of different critical phenomena into a small number of universality classes. All systems belonging to a given universality class have the same critical exponents, and certain scaling functions become identical near the critical point. It is the aim of this work to demonstrate the usefulness of universal scaling functions for the analysis of non-equilibrium phase transitions. In order to limit the coverage of this article, we focus on a particular class of non-equilibrium critical phenomena, the so-called absorbing phase transitions. These phase transitions arise from a competition of opposing processes, usually creation and annihilation processes. The transition point separates an active phase and an absorbing phase in which the dynamics is frozen. A systematic analysis of universal scaling functions of absorbing phase transitions is presented, including static, dynamical, and finite-size scaling measurements. As a result a picture gallery of universal scaling functions is presented which allows to identify and to distinguish universality classes.Comment: review article, 160 pages, 60 figures include

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    The Rossiter-McLaughlin effect in Exoplanet Research

    Full text link
    The Rossiter-McLaughlin effect occurs during a planet's transit. It provides the main means of measuring the sky-projected spin-orbit angle between a planet's orbital plane, and its host star's equatorial plane. Observing the Rossiter-McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterisation of transiting exoplanets. Measurements of the spin-orbit angle have revealed a surprising diversity, far from the placid, Kantian and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star's equator. This chapter will review a short history of the Rossiter-McLaughlin effect, how it is modelled, and will summarise the current state of the field before describing other uses for a spectroscopic transit, and alternative methods of measuring the spin-orbit angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H. Deeg & J.A. Belmont

    Steam sauna and mother roasting in Lao PDR: practices and chemical constituents of essential oils of plant species used in postpartum recovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fundamental in traditional postpartum recovery in Lao PDR is the use of hotbeds, mother roasting, steam sauna and steam baths. During these treatments medicinal plants play a crucial role, but little has been published about how the treatments are carried out precisely, which species are used, the medicinal properties of these species, and the medicinal efficacy of their chemical constituents.</p> <p>Methods</p> <p>Sixty-five interviews, in 15 rural villages, with women of 4 different ethnic groups were conducted to survey confinement rituals, and postpartum plant use and salience. Essential oils from the main species used were extracted using steam distillation and the main chemical constituents characterized using gas chromatography-mass spectrometry (GC-MS).</p> <p>Results</p> <p>A total of 10 different species were used by three or more of the ethnic groups included in this study. All species were used in steam sauna and bath, but only 3 species were used in hotbed and mother roasting. Essential oils of <it>Amomum villosum, Amomum microcarpum </it>and <it>Blumea balsamifera </it>were found to contain significant amounts of the following terpenes: β-pinene, camphor, bornyl acetate, borneol, linalool, D-limonene, fenchone, terpinen-4-ol and α-terpinene.</p> <p>Conclusions</p> <p>Many of these terpenes have documented antimicrobial and analgesic properties, and some have also synergistic interactions with other terpenes. The mode of application in hotbed and mother roasting differs from the documented mechanisms of action of these terpenes. Plants in these two practices are likely to serve mainly hygienic purposes, by segregating the mother from infection sources such as beds, mats, stools, cloth and towels. Steam sauna medicinal plant use through inhalation of essential oils vapors can possibly have medicinal efficacy, but is unlikely to alleviate the ailments commonly encountered during postpartum convalescence. Steam sauna medicinal plant use through dermal condensation of essential oils, and steam bath cleansing of the perineal area is possibly a pragmatic use of the reported medicinal plants, as terpene constituents have documented antimicrobial, analgesic and anti-inflammatory properties.</p

    The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities

    Get PDF
    We provide an overview of the design and capabilities of the near-infrared spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is designed to be capable of carrying out low-resolution (R ⁣=30 ⁣330R\!=30\!-330) prism spectroscopy over the wavelength range 0.65.3 ⁣ μ0.6-5.3\!~\mum and higher resolution (R ⁣=500 ⁣1340R\!=500\!-1340 or R ⁣=1320 ⁣3600R\!=1320\!-3600) grating spectroscopy over 0.75.2 ⁣ μ0.7-5.2\!~\mum, both in single-object mode employing any one of five fixed slits, or a 3.1×\times3.2 arcsec2^2 integral field unit, or in multiobject mode employing a novel programmable micro-shutter device covering a 3.6×\times3.4~arcmin2^2 field of view. The all-reflective optical chain of NIRSpec and the performance of its different components are described, and some of the trade-offs made in designing the instrument are touched upon. The faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its dependency on the energetic particle environment that its two detector arrays are likely to be subjected to in orbit are also discussed
    corecore