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PHYSICAL REVIEW E, VOLUME 65, 026145
Interface depinning versus absorbing-state phase transitions
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2Instituto de Fsica Tesica y Computacional, Carlos |, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain
(Received 30 May 2001; revised manuscript received 23 August 2001; published 25 January 2002

According to recent numerical results from lattice models, the critical exponents of systems with many
absorbing states and order parameter coupled to a nondiffusive conserved field coincide with those of the linear
interface depinning model within computational accuracy. In this paper the connection between absorbing-state
phase transitions and interface pinning in quenched disordered media is investigated. For that, we present an
heuristic mapping of the interface dynamics in a disordered medium into a Langevin equation for the active-
site density and show that a Reggeon-field-theory-like description, in which the order parameter appears
coupled to an additional nondiffusive conserved field, emerges rather naturally. Reciprocally, we construct a
mapping from a discrete model belonging in the absorbing state with a conserved-field class to a discrete
interface equation, and show how a quenched disorder, typical of the interface representation is originated. We
discuss the character of the possible noise terms in both representations, and overview the critical exponent
relations. Evidence is provided that, at least for dimensions larger that one, both universality classes are just
two different representations of the same underlying physics.

DOI: 10.1103/PhysRevE.65.026145 PACS nuni$)er05.10.Gg, 05.70.Ln, 68.35p

[. INTRODUCTION be computed ire expansior}8]. Other universality classes of
absorbing-state phase transitions have been identified; all of
Phase transitions separating a nontrivial from a frozerthem owe their existence to the presence of some additional
phase, in which the dynamics is completely arrested, appeaymmetry or conservation law with respect to the broad DP
in a large variety of situations in physics, as well as in manyclass. Among them some example are the conserved parity
other disciplineg1—3]. A central problem from a theoretical class, in which there are tw@d,-symmetric equivalent ab-
viewpoint is to understand how the symmetries and conseisorbing state§9,3], dynamical percolatiof10], and the dif-
vation laws of the dynamics are reflected in the categorizaferent classes of transitions with extra conservation laws
tion of models into universality classes. There are two maif11-13.
general contexts in which this type of frozen states appear, In the group of pinned interfaces, the simplest continuous
(i) Lattice models with discrete particles; typically par- model for depinning is the quenched Edwards-Wilkinson
ticles originate “activity” and the frozen state without activ- equation, also called, “linear interface mod€L’IM) [6,7],
ity is referred to as “absorbing stat¢1—3]. This group ap-
pears in various disguises as cellular autonjdfareaction- dh(x,t)=vV2h(x,t)+F+ (x,h(x,1)), 2
diffusion system$1,3], directed-percolation-type modg3],
or the fixed energy ensemble of sandpile cellular automatahich describes an elastic interfa¢éae Laplaciah at the
[5], among many other examples. reference heighh(x,t), with surface tensiorv, under the
(i) Elastic interfaces in random environments. In thisinfluence of a constant external driving terf and a
group, the dynamics is frozen whenever the interface iguenched noisey(x,h(x,t)). Equation(2) exhibits adepin-
pinnedby the quenched disorder, while the nontrivial phasening transitionat a critical forceF; the interface configu-

is the moving or depinned orié,7]. ration and dynamics develop critical correlations in the vi-
The number of physical realizations of both of these twocinity of the critical point. The standard approach for a
generic families of phase transitions is hyde-3,6,7. theoretical analysis of the LIM is the functional renormaliza-

The most prototypical universality class in the first grouption group method. One-loop expressions for the minimal set
is that embracing, among many other models and systemgf exponents have been computed by Nattermetred. [14]
directed percolatiorfDP) [1-4]. At a continuous level the on one hand, and by Narayan and Fisfi5] (see also the
DP class is represented by the Reggeon field théBFT)  more recent work by Le Doussal and collaboratfis]).
[8], which can be written in terms of the following Langevin Here one enters technically and conceptually difficult terrain
equation: due to the renormalization of the whole disorder correlator.
The outcome is that for noise fieldg which do not exhibit
dp(x,t)=ap—bp?+V?p+ a\/En(x,t), (1) extra translational symmetries, the expected depinning be-
havior follows, very generally, that resulting from a random-
wherep is an activity field,a, b, ando are constants anglis  field uncorrelated noise term: the LIM universality class
a s-correlated Gaussian white noise. The RFT is the minima]14,15,17,18 Other universality classes in the interfaces-in-
field theory capturing the relevant ingredients of the DP unitandom-media realm are the quenched Kardar-Parisi-Zhang
versality class. It can be renormalized using standard fieldKPZ) equation[6,7,19 and the Edwards-Wilkinson equa-
theoretical methods and the associated critical exponents caion with columnar nois¢7,20].
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TABLE |. Critical exponents for steady-state experimentslin2 andd=3. Models: CTTP, conserved
threshold transfer process; CRD, conserved reaction-diffusion model; Manna, Abelian Manna sandpile; LIM,
linear interface model. See the Appendix for exponent definitions.

B L Blv, z
Steady-state exponents=2
CTTP 0.641) 0.823) 0.783) 1.555)
CRD 0.681) 0.833) 0.792) 1.555)
Manna 0.641) 0.823) 0.782) 1.574)
LIM 0.64(2) 0.801) 0.803) 1.566)
Steady-state exponents=3
CRD 0.862) 0.635) 1.394) 1.805)
Manna 0.842) 0.60(3) 1.402) 1.805)
LIM 0.84(2) 0.6064) 1.392) 1.7515)

Recent investigation@notivated by the analysis of sand- with a conserved field and pinned interfaces in random me-
pile modelg 21,22, the archetype of systems exhibiting self- dia, including annealetbr therma) noise and quenched dis-
organized criticalit(SOQ [23]) have demonstrated that dif- order, respectively. We will present heuristic arguments pro-
ferent models showing a continuous transition into anviding a theoretical explanation for so different systems
absorbing phase and with an order parameter coupled lirsharing the same universal critical behavior. The connection
early to an extra, nondiffusive conserved figIDCF) be-  between absorbing-state models in the DP clagthout a
long to a unique universality clagd3,24,29 that we will  conserved fieldand their interface representation has also
refer to as NDCF class. This class differs from the extremelbeen recently considered in the literat(i8d]. In particular
robust DP class owing to the presence of an additional corthe RFT was mapped into rather unusual interface equation,
servation law{12]. Moreover, the critical exponents of this not resembling any known interfacial problem.
class seem, within numerical accuracy, equal to those of the The paper is structured as follows: We start in Sec. Il by
LIM class[5,13,24,25. In Table | we present a comparison presenting the RFT-like Langevin equation for the recently
of numerical results obtained fofl) two different models introduced NDCF class. In Sec. Il we present a prototypical
with a nondiffusive conserved field and many absorbinginterface model in the LIM class, in particular, the cellular
states, namely the conserved threshold transfer processitomaton by Leschhofi7] (see alsd18]) and work out a
(CTTR) [13,24, and a conserved reaction-diffusion model derivation of a Langevin equation for the activity density
(CRD) [13,24], (2) the fixed energy version of the Manna paying particular attention to the way by which the noise can
sandpile model and3) the LIM model. Observe that all the be found. In Sec. IV we proceed conversely: we employ a
reported exponents coincide within numerical accuracy irdiscrete mapping of a model with absorbing states in the
bothd=2 andd=3. This might be surprising at first sight, NDCF class into a continuous interface representation. We
as in CTTP and CRD models there is no quenched disordegnd up with an interface equation, with several quenched
as there is in LIM, and quenched disorder is usually a relnoise terms that reflect the microscopic rules and the thermal
evant perturbation when it comes to universality issues.  noise applied in them. We discuss at this point the noise

From a different perspective this observation is not sccorrelations that arise and their relevance, with the aid of the
surprising, as different tentatives have been reported in theenormalization grougRG) literature. Finally, we present a
literature in order to relate the dynamics of sandpiles to thatliscussion and an Appendix in which we outline the relations
of elastic manifolds in random media, i.e., to the LIM model between the exponents in the two different pictures.

[26,27], and also the same sandpiles have been argued to
belong to the NDCF clasb,25]. Furthermore, there is an-
other viewpoint from which the coincidence between both
types of models is not so striking, namely, that provided by One particular system in the NDCF clgsait of the many
the “run-time statistics” theory 28]. This theory establishes studied[13,24)) is a two-species reaction-diffusion model, in
that quenched disorder can be mapped rather generically intwhich one of the species is immobi{l&l] (see Sec. IV for a
long-range temporal correlatiorise., a long-term memojy detailed definition It has the great advantage of allowing for
in the activity field,(note this relation works also the other a rigorous derivation of a coarse-grained field theoy,
way aroundl[30], and has been recently applied with successequivalently, a Langevin equatipwia a Fock space repre-
to the Bak-Sneppen model among otheg]. In the NDCF  sentation of the dynamickl1,24,32. The result is in the
class the presence of a conserved field plays the role of form of a Reggeon field theory coupled to an extra conserved
long-term memony5,25] and, therefore, it is not a very big nondiffusive field, or what is equivalent, a RFT equation
surprise that it is equivalent to some sort of quenched disomwith an extra non-Markovian terif,24,23. Quite remark-
der. ably this Langevin equation coincide@p to irrelevant

In this article we discuss in detail the relation between theerms with the one proposed previously, based only on sym-
two presented groups of transitions, i.e., absorbing statemetry and relevancy arguments, as the minimal Langevin

Il. THE NDCF FIELD THEORY
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equation capturing the physics of NDCF, namggy24], whenp is a random number uniformly distributed between
zero and unity. This choice implies that the average driving

ap(x,t) 2, o2 force isF=(f)=2p— 1. F plays the role of a control param-
ot =ap(x)—bp(X)"+ V=p(X,t) — (X, ) p(x.1) eter. The cSiticaI point is estimated to bemt~0.800[17].
Now, at every time step, and at each site where the total
+ avp(X,t) p(x,t), driving force exceeds its threshold value, i.e., at each
interface-site advance, we define an activity variable and set
AP(X,t) it equal to one. On the other hand, in the remaining lattice

a DV2p(x,1), (3 sites the corresponding activity takes a zero value. Addition-
ally, we also define at each site and time, a continuous
plus higher-order terms, irrelevant from naive power count-‘background” variable, equal t&2h(x,t) + F. This controls
ing analysis[33]. Note that the second equation, describingthe probability of each interface site to advance at each time,
the evolution of the background conserved figtarse- regardless of whether it actually slips or not. Let us empha-
grained representation of the total number of particles, whictsize that this background variable is a conserved magnitude,
is conserved in the microscopic moyjalepresents an static 1-€., it takes a constant value, equal Ep when integrated
nondiffusive field: in the absence of activity its dynamics is(Summed over the whole lattice. However, locally, it favors
frozen. Observe also that the second equation, being linea®! inhibits the generation of new activity. We now build up a
can be integrated out, and a closed equation for the activitgouple of equations for the evolution of the two fields: the
written down. More concretely, activity, p(x,t), and the background field;(x,t), which are
the coarse-grained field analogous of the previously defined
B t o2 , site variables. Using the identification between activity and
'/’(X’t)_w(X’O)JFDdet Vip(x.t'). ) ready-to-advance site$i(x,t)=ftdt’ p(x,t') +h(x,0). Let
us write down a couple ofean-fieldequations for the two
The first contribution in Eq(4), a quenchedcolumnaj dis-  defined fields:
order, represents the initial condition, while the second is a p(x.)
non-Markovian term. The Langevin equatio3), even o 2
though it looks rather similar to the RFT, has resisted all ot PO+ P DAUXDIVIP(XL).  (8)
renormalization attempts; therefore, predictions about critical .
exponents coming from_an gpsnon expansion _calculatlon are l/I(X,t)EVZh(X,t)-FF:f dtV2p(x,t)+ V2h(x,0)+F,
not available so far. This might be an indication that some 0
type of functional renormalization group calculation is re- 9)

ggggg’ cht;?nlt;t]?u(r:tizeﬁ ifr?sri g;rr]]tes I{(')Mb s C(I:llja?rti:‘?eno’l but this ISSUE\’/vhereg is an unknown functional of the background field.

The justification of the different terms is as follows:

(i) The term—p(x,t) describes the decay of active sites,
that after the corresponding interface advance become, in
general, nonactive. At a coarse-grained level higher-order

We consider a representative of the LIM class, namelycorrections, as—bp?(x,t) may also appear. In particular,
the Leschhorn-TangLT) cellular automatiof17]. In order ~ they might play an important role in order to prevent the
to study its relation with standard systems with absorbingctivity from growing unboundedly, i.e., in stabilizing the
states, we intend to cast it into a Langevin equation describtheory.
ing the evolution of a coarse-grained activity fi¢2]. (it) +p(x,t)Gl¢(x,t)] represents the fact that activity is

The LT automation is defined as follows. The interfacecreated in regions where some activity is already present, and
field h(x) satisfies at each discrete time steghe following  the rate of creation at each point is a function of the local

III. PHENOMENOLOGICAL ACTIVITY DESCRIPTION
OF LIM MODELS

equation: background fieldis(x,t). Observe that the total contribution
of this term when integrated over the whole space has to be
h(x,t))+1, f(xt)>0 zero, but locally it fosters or inhibits the creation of further
h(Xtis1)= hxt),  F(xt)<0 (5 activity. Again, higher-order powers g@i(x,t) might also be
e ’ ' included.
where the forcd is given by the combination of elasticity  (iii) V?p(x,t) describes the diffusion of activity. This
and a random quenched pinning force as terms appears generically for diffusive systems at a coarse-
grained scale.
f(x,t;)=V2h(x,t;)+ n(x,h). (6) (iv) In what respects the/(x,t) field, Eq. (9), we have

5 ) ) ) ) just written its definition by equatiniy(x,t) to the number of
Vh(x) is the discrete Laplacian, i.exyh(NN)—2Dh(X)  “topplings” (or activity events at that point in all the pre-
and NN denotes the nearest neighbors on a hypercubic |aé‘eding history, plus its initial value.

tice. A reasonable choice for the noise is Expandingg[ ¢(x,t)] in power series, and keeping only
1 the leading contribution, we are left with a term

n(x,h)= P @ +Ap(x,t) ¥(x,t) (where\ is a constanton the right-hand
-1, 1-p side of Eq.(8) (observe that the constant term in the Taylor
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expansion has to be zero as its integral has to be conservetije to the meager phase space, and the slow relaxation of the
as argued befojeA posteriori we shall show that the omit- initial condition, this might not be the caa4.
ted terms, as well as higher-order corrections to the Laplac- Performing a perturbative, diagrammatic study of the pre-
ian term, are irrelevant in what respects large scaleyious Langevin equation it is easy to dedready at one-loop
asymptotic, properties. level) that a new nonlinearityverteX, with the same degree

In order to account for the system fluctuatiofmm-  of relevancy as the nonlinear terms already present in the
pletely ignored so farwe now introduce a noise field con- theory(i.e., the nonlocal-in-time vertex and the noise ise
tribution to Eq.(8). For that, as it is well known in theoret- perturbatively generatech?(x,t). In fact, this term could
ical field descriptions of systems with absorbing st4®8],  have been introduced also at a mean-field level, as pointed
a RFT noise termo/p(x,t) 7(x,t) is needed, where is a  out before, as a stabilizing term for the activity equation.
constant and; a Gaussian white noise. This just reflects the Including all the discussed terms into the equationgdor
fact that, asp is a local coarse-grained variable its local and integrating the equation fgr, we finally obtain
fluctuations are proportional to its square résete[1—3] and
references therejnlt also captures the physical key ingredi- Ip(x,1) ap(X,t)—bp(X,t)2+)\p(X,t)ftdt'p(X,t')

0

ent: wherever activity vanishes locally, fluctuations are can- at
celed[2].

Before proceeding further, let us now discuss why the +AV2h(x,0)+ VZp(x,t) + o p(X,t) n(x,1),
guenched disorder of the microscopic model can be repre- (11)

sented by an annealed noise in the derivation shown before.

The key point is the observation that in active regions, i.e.wherea=—1+F\ andb>0 are constants. At this point, it
where the interface advances, a new noise variable is sés a rather straightforward exercise to verify that no further
lected at every time step and, as the interface does not returglevant terms are generated when including perturbative
to already passed regions, there is no need to store the midiagrammatit corrections to the bare theory. Therefore, the
croscopic noise history, and the noise can be freshly exresulting Langevin equation is identical to the one proposed
tracted from its probability distribution after every interface for systems with an infinite number of absorbing states and
advance. In this way, it becomes rather obvious that in dean activity field coupled to a static conserved field E3).
pinned (active) regions, quenched and annealed noises arg5,13,24.

fully equivalent at the microscopic level. Upon coarse grain- Summing up, we have mapped a microscopic model be-
ing, the noise can be expected to acquire a RFT-like charadenging in the LIM class to the Langevin equation character-
ter as the correlations in the integrated activity, or number ofzing the NDCF class. Though our derivation is not rigorous,
simultaneously active sites vanish on large enough scalesie believe it provides a strong evidence that in fact LIM and
More subtle is the connection between the two types oNDCF define the same universality class.

noises with respect to pinnddbsorbing regions. While the

annealed noisey changes in time even if there is no activity IV. MAPPING A REACTION-DIEEUSION MODEL

in a given region, its variations are completely irrelevant as TO DEPINNING

the noise amplitude appears multiplied ffy= 0. Noise(in- i ) _

cluding its activity dependent amplitudat a given spatial In this section we proceed conversely to the previous one:

point changes only whenever activity arrives to it, mimicking Starting from a microscopic model in the NDCF class we
perfectly what happens in the microscopic interface modelMap it onto the LIM continuous equation, E@). To that
where regions pinned under the influence of an unfavorabl§nd we follow a recipe already applied to many sandpile
quenched noise can be depinned only under the presence Bdels exhibiting SOG27]. Following [24] we consider a
neighboring moving regions. Therefore, the considered timelWo-species reaction-diffusion process ot alattice, with
dependent noise, reproduces propédyleast qualitatively ~ Particles of typesA and B involved. At each sité, and at

all the properties of the original quenched disorder. each(discrete time step the following reactions take place:

The previous considerations lead finally to the following

Langevin equation for the activity field: Bi—Bn, re=1, (12)
c?p(X,t) 5 5 Ai+Bi*>ZBil I’l, (13)
=[—1+AF+NVh(x,0)]p(X,t)+ V<p(X,1)
a B—A, Ty. (14
+)\p(X,t)ftdt'VZp(X,t')+0'~/p(X,t)77(X,t), TheA;, B; denote particles of each kind at siteTher’s are
0 the probabilities for the microscopic processes to occur: dif-

fusionry, activationr,, and passivation,. Without loss of
(10 d — ! . )
generality we will fixr4=1, implying that, after having the
where we have substitutefd by its expression coming from chance to reacB particles diffuse with probability one. Thus
Eq.(9). In general, the system is expected to lose memory obne can define a phase boundary between the active and
the initial state for long enough times, therefore, the depenabsorbing phases in terms of thg, r, probabilities, with a
dence onV2h(x,0) is expected to be washed out. However,phase transition in between. We assign occupation numbers
in some cases, as for instance one-dimensitid) systems, na;, Ng; to each site. As thé\ particles are nondiffusive,
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this system has an infinite amount of absorbing states defined AH
by ng ;=0 for all i, with ny; arbitrary. A - ). 17)
Now we definganalogously to what is done for sandpiles
[5,27]) a height fieldH(x,t) which increases by one unit
every time a site gives on@r more than oneactive, diffus-
ing B particle to one(or more than oneof its neighbors.
When this happens, we say, using the sandpile terminolog\z
that the site “topples.” In this way, thel field measures the

integrated activity ak up to timet. : . o . .
g y P &lmesnx ~gH(X); relative deviations from this equality be-

The mapping to an interface automaton with quenche . . .
noise is based on the fact that both, the reactions between tHé neghgi;nlblgmasynl%toncally. Defining also the average
ny', asn,=g/2d=, H(xyn,t), we can com-

A and B species, and the diffusion of particles can be ac-value ofny’, Xt 1 OXN
counted for by looking at their net effects at every tilBe pute a noise(x,H) as the deviation ofiy’ with respect to its
particles leave the site. One just has to look at, andng average value,

when the site becomes active and a particle diffuses out. The
dynamics ofH can be written as

It can be rewritten with the help of two particle fluxes;
andn®", are the number of grains added to or removed from
given sitex up to timet, respectively. Let us also defirge

s the average number of particles given to the nearest neigh-

bors at each toppling event. It is clear that for long enough
out

T(X,t)IHLn—%XEM\‘ H (X t). (18)

H(x,t)+1, f(x,H)>0
H(xt+1)= (15  In other words,7(x,t) counts the relative proportion of par-
H(x,t), f(x,H)=<0, . . . !
ticles diffused out from the neighbors that actually arrive to
o ) ) ~ the site under consideration, compared with its average
which is formally identical to the Leschhorn automaton in value. A site to which partides have topp|ed in excess will

the LIM class, with a local “force” defined as take a positive value of, and, therefore, will be more likely
to topple in the following time steps. Notice that the con-
f(X,H) = Nt(X,H) — E(X,H), (16)  struction that yieldsr is exact.

Plugging this into Eq.(16), and using thatn(x,t)

— in out ;
wheren,(x,H) =na(x,H) + ng(x,H) is the total number of MeoiX,0)F M =M™, we can write{27]
particles atx, and ¢ is a local random threshold that results
from the microscopic processes. More concretely, the nbise f
is defined as follows: Consider the siteafter theHth top-

pling, eitherng(x,H)=0 orng(x,H) >0 (this last can be the

case if and only if particles have arrived from the nearestVhereF(x,0)=n(x,t=0).

neighbors at the same time stefn the first case, it will The discretization in Eq(17) can be understood so that
remain zero until a particle arrives from a nearest neighbofl€ rules result in aeffectiveforce f' that is exactly unity
site; then one is free to choose a value §6x,H) such that  When the interface fielt advances. ThuaH/At=f"6(f )

it makes the force negative in the time interval between =f 6(f") [27]. This construction can be achieved by pick-
topplingsH andH+1. In the second caseg(x) will fluc- ing £ to have exactly the right value in order to make the

tuate owing to the microscopic passivation and activatioforce driving the interface equal to unity, if it is larger than
processes, either going iz (x) =0 or inducing a toppling at  2&ro- One arrives finally at the discretized interface equation,

the next time step. The relative probabilities of these two AH g
alternatives, as derived from the microscopic dynamics, are a9 _
captured in the(x,H) probability distribution. At 2d7 HTFXO=E0GH)F70GH). (20
Observe that depends solely upon the total number of
particles after the preceding toppling and the microscopid.et us stress the presence of three different noise terms
dynamical rules. In particular, the largag, the larger the (1) F(x,0) represents the original configuration of total
probability to have many particles and the larger the prob- number of particle at=0, and is, therefore, @olumnar
ability to topple. Let us also remark that the immobile grainsnoise term [20]. It induces an initial transient regime until
n, constitute a “pinning force”(the larger their relative eventually, the dynamics washes out the dependence of the
number, the lesser the probability to toppl€he point-wise original configuration. In general, columnar disorder is irrel-
noise fieldé(x,H) should have two-point weak correlations evant in the renormalization group sense as compared to
in x since, in particular, it depends on the number of graingjuenched noise; therefore, using relevancy arguments, it
received from the NN's at the interface locatibifx) which ~ could be eliminated, at least in high enough dimensions,
induces weak site-site correlations. The fact thachanges close or above the critical or#,=4. Notice that this state-
slowly will make the H part of the noise correlator ment is equivalent to the LIM symmetry, by which static
(E(x,H)E(x',H")) less trivial than a simple delta function force fieldsF(x,0) (independent oH) is completely equiva-

g

=EVZH+F(x,0)—§(x,H)+r(x,H), (19

S(H—H"). lent to the existence of a nontrivial initial interface profile
Equation(15) can be considered as a discrete interfaceH(x,t=0). However, in low-dimensional systems, and in
equation particular ind=1, due to the meager phase space, relaxation
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times might be huge, and the time needed to eliminate th&herefore, reciprocally to what was done in the preceding
dependence on the initial particle distribution divergentlysection, we have mapped the reaction-diffusion process into
large[34]. an interface equation. The dynamics of this interface equa-

(2) The noise tern¥(x,H) represents the local threshold, tion follows exactly the history of a reaction diffusion pro-
determining whether a site with sorBeparticles topples at a cess, the details of which are mapped into the quenched
given time or, alternatively, they are transformed iAtpar-  noisesé and 7, and a columnar noise(x,0). Let us remark
ticles by microscopic processes. It captures the in-site micrathat the existence of a conservation law has played a key role
scopic dynamics, and depends essentiallypngn and on the  in order to obtain a Laplacian in E¢O).
microscopic probabilities. In a nutshell, it says how many of Finally, using standard renormalization group arguments
then,; particles are of typd after the microscopic dynamics about the relevancy of different operators, we can eliminate
has operated in the corresponding time step: ihgllare of  higher-order irrelevant terms and noise correlations, and then
type A then £>n,,, and f<0; conversely, if any of the we are left with the LIM equation for point disordgt4,16
particles is of typeB then £<n,,; andf>0. Observe that if (see also the Appendix
the diffusion probability was smaller than unity, then we It must be emphasized, that the mapping works in both
should substituté(x,H) by a “thermal noise”’é(x,t), i.e.,&  ways, itis evident that the noise construction can be inverted
would change its value after every time step instead ofo yield a reaction diffusion process, that corresponds to an
changing only after each toppling: this is due to the fact thainterface model, assuming that the original noise terms have
if ry<1 then a sitex including B-type particles could not the right correlation and conservation properties. The inter-
topple at timet [£(x,t) below thresholl and do so at a face model Eq(20) resembles very much the one that cor-
future timet’ [£(x,t’) above threshold This “thermal responds to the Manna sandpile automaton, with the addition
noise” would generate a transition rounding off, but the criti- of the &-noise term that is more point disorder like than the
cal exponents should not be affected by this irrelevant perterm.
turbation[14]. Therefore, we stick to the simplest case Summing up, reciprocally to what was done in the pre-
=1, ceding section, in this one, we have constructed a mapping

(3) The noise termr keeps track of the Brownian motion between a microscopic model in th NDCF class into the
of particles; i.e., it takes into account the fact that particled-angevin equation for the LIM class.
are not homogeneously distributed among the NN, but one of
them is picked up randomly for each toppling event. It
changes slowly since the effect of the random choidegc-
tions) on the configuration is slow. This is in particular true  We have presented strong heuristic evidence that, rather
since the noise is conserving, as the number of particles is generically, the universality class of systems with many ab-
conservedand as can be seen by integrating B@)]. Akey  sorbing states and order parameter coupled to a nondiffusive
point is that, analogously to what discussed in the precedingonserved field, the NDCF class, and that of the linear inter-
section, the choice to give a particle to a certain neighbor caface model with point-disorder coincide. This fact, already
be taken to be “quenched,” i.e., chosen in advancé=a®, pointed out from numerical simulatioris,13,24 is true at
or “annealed,” i.e., decided on the spot. The correlatorrof |east nearby the critical dimensial,=4, where relevancy
can be generically written as arguments are reliable. In low-dimensional systemis: {)

this equivalence could break down owing to the existence,
(r(x" , H")7(x,H))~f (X' =x)f (H'=H).  (21)  for example, of slow decaying initial conditiofi34]. For the
frozen configurations in the point-disorder LIM it is known
The (so far unknown correlatorsf, and f, reflect the dis- that the correlations of the forcegx,H) acting on the in-
crete nature of the choices in the dynamics. Two microscopiterface vanish. In the case of NDCF models, like the Manna
reasons lead immediately to nontrivial correlationsrin sandpile, such correlatiorfsow computed from the particle

(a) The noisesr at the NN’s of sitex are correlated due to configuration in frozen configuratiopsiay become nonzero:
an exclusion effect: If a site gives out a diffusiBgparticle  this is a future avenue for numerical studies, but hopefully
to a neighbor, then all the other neighbors are excluded. Ththis would be a irrelevant feature.
actual coarse-grained noise correlations are harder to assess,Likewise, if one considers a noise field for the LIMq.
since the fluctuations in the particle flux thatmeasures (7)] with nontrivial (power law bare correlations im or H, it
make the interface to fluctuate, and thus a separable noise unclear at this point how these should be reflected in the
correlator as Eq(21) is hard to compute. The easiest way to construction of a Langevin equation for the corresponding
analyze the correlations among the different sites is, thereactivity field, like Eq.(10). Correlations in the local forces
fore, to compute the noise correlator from numerics of thelor “activity thresholds” will affect the way the coarse
microscopic model, using the noise definition E§8). This  graining works. For instance, due to the noise structure the
program has been pursued for sandpj3. pinned and still-active regions will be correlated.

(b) At each site the noise follows the dynamics of a ran- In order to establish the connection between the two
dom walker. In fact, every time a nearest neighbor topplesclasses we have mapped a discrete interface model into the
the choice(give the particle tox or to a different sittmakes  Langevin equation characteristic of the NDCF class, and
it so thatf, ~(H’—H)? since at every stepcan go “up”  conversely mapped a discrete model in the NDCF into the
or “down” with respect to the average. well-known Langevin equation describing the LIM class. In

V. DISCUSSION
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order to have a more rigorous proof, one should be able to APPENDIX
map one Langevin equation into the other, but this, being the . L .
Langevin equations coarse-grained representations of the mi- The scaling of the phase transition in the absorbing-state

croscopic models, is not an easy task to fulfill, and remain%i%resﬁ_';ggge'zcirbaer?ﬁteeggrergl g’?i/otr?seir?)iﬁgliﬁt]its Vi t hzé
an open challenge. B. i

Let us remark that a similar problem remains also Oloens.patial and time directions, the development of the correla-

namely, the rigorous connection between the quenched Kp%ons |n.t|me, and the behawor_ @fabo"? the critical point,

[6,19] depinning transition and directed percolation depin-reSpeCt'VeW' One has the scaling relation

ning[7,36] in two-dimensional system&and to directed sur-

faces in higher dimensior{87]). It is clear from numerics, p(AL)=L"AmR(LYA), (A1)

that indeed these two universality classes coincide, but a sat-

isfactory proof of this fact is, to the best of our knowledge, where A is the distance to the critical point, ar is a

still lacking. scaling function with R(x)~x? for large x. For L>¢
It was the hope, that the possibility of renormalizing the _ z», e expectp_a~Aﬁ (here¢ is the correlation lengdh

NDCF Langevin equation using standard RG techniques, af, henA=0 we have thab_a(O,L)~L*ﬁ’”i. For A>0, by

problem from the RFT-like equation approach, could she contrastp_ approaches a stationary value, while 0 it
some light on thein principle, technically more difficult and falls off asL 9. These can be used to establish the numerical

obscure functional renormalization group analysis required

for the interface equation with quenched noise. However, th%-,(alues of_the exponents, .

difficulties encountered in renormalizing, using standard per- In the mterfacg representathn the relevant expoqepts are
turbative schemes, the Langevin equation for NOJC#,25 », Zas above, with the C‘.’”".e”“"” thﬁ.‘g Vi U.SU"’.‘”y 'F IS

are considerable; and have made all the attempts to reno@_ssumed that the dynamics is self-affine, which implies that

malize the theory to fall through. It is rather likely that the L ~ X" [6,7]. This defines the roughness expongnthat

failure of standard RG attempts implies that a functional RGcharacterizes the spatial correlations of the interface. If
“simple scaling” [35,7] holds, then one has a unique rough-

scheme is needed in order to properly renormalize the theory; . . :

analogously to what happens for the LIM equation. Renor-}qlSeSS exponent and we can write for the interface width

malizing the NDCF Langevin equation and relating the de-

rived critical exponents to those obtained using functional 5 t2Av t<t,

RG for LIM remains an open and very challenging problem. WALL~) L2a (g (A2)
Finally let us also point out that all the discussions pre- ’ )

sented in this work deal with the “constant forcéh the . . . .

interface languageor “fixed energy” (in the absorbing-state USINg also the early-time exponep, . If simple scaling

terminology ensemble. They can be easily extended to thd'0!dS, we have the exponent relatigyz=« [35]. If only

“constant force” or “slow driving” ensemble[5,27], in one tmgsca}e is present, the grovyth exponent is related to

which the system self-organizes into its critical state. Thishe activity time-decay exponent, via 6+ By=1 [31].

point is, however, not essential since all evidence points to Eor point-like disorder the first-loop functional renormal-

the fact that if two models belong to the the universalityZation group result reads=(4—d)/3, and z=2—(4

class, they continue to share the same set of critical expa- d)/9 [14]; see the extension to second ordef16]. From

nents upon changing ensemble. these, using the exponent relations, the other exponents fol-
low. For rather generic bare disorder correlators the implica-
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