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Interface depinning versus absorbing-state phase transitions
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According to recent numerical results from lattice models, the critical exponents of systems with many
absorbing states and order parameter coupled to a nondiffusive conserved field coincide with those of the linear
interface depinning model within computational accuracy. In this paper the connection between absorbing-state
phase transitions and interface pinning in quenched disordered media is investigated. For that, we present an
heuristic mapping of the interface dynamics in a disordered medium into a Langevin equation for the active-
site density and show that a Reggeon-field-theory-like description, in which the order parameter appears
coupled to an additional nondiffusive conserved field, emerges rather naturally. Reciprocally, we construct a
mapping from a discrete model belonging in the absorbing state with a conserved-field class to a discrete
interface equation, and show how a quenched disorder, typical of the interface representation is originated. We
discuss the character of the possible noise terms in both representations, and overview the critical exponent
relations. Evidence is provided that, at least for dimensions larger that one, both universality classes are just
two different representations of the same underlying physics.

DOI: 10.1103/PhysRevE.65.026145 PACS number~s!: 05.10.Gg, 05.70.Ln, 68.35.2p

I. INTRODUCTION

Phase transitions separating a nontrivial from a frozen
phase, in which the dynamics is completely arrested, appear
in a large variety of situations in physics, as well as in many
other disciplines@1–3#. A central problem from a theoretical
viewpoint is to understand how the symmetries and conser-
vation laws of the dynamics are reflected in the categoriza-
tion of models into universality classes. There are two main
general contexts in which this type of frozen states appear,

~i! Lattice models with discrete particles; typically par-
ticles originate ‘‘activity’’ and the frozen state without activ-
ity is referred to as ‘‘absorbing state’’@1–3#. This group ap-
pears in various disguises as cellular automata@4#, reaction-
diffusion systems@1,3#, directed-percolation-type models@3#,
or the fixed energy ensemble of sandpile cellular automata
@5#, among many other examples.

~ii ! Elastic interfaces in random environments. In this
group, the dynamics is frozen whenever the interface is
pinnedby the quenched disorder, while the nontrivial phase
is the moving or depinned one@6,7#.

The number of physical realizations of both of these two
generic families of phase transitions is huge@1–3,6,7#.

The most prototypical universality class in the first group
is that embracing, among many other models and systems,
directed percolation~DP! @1–4#. At a continuous level the
DP class is represented by the Reggeon field theory~RFT!
@8#, which can be written in terms of the following Langevin
equation:

] tr~x,t !5ar2br21¹2r1sArh~x,t !, ~1!

wherer is an activity field,a, b, ands are constants andh is
a d-correlated Gaussian white noise. The RFT is the minimal
field theory capturing the relevant ingredients of the DP uni-
versality class. It can be renormalized using standard field
theoretical methods and the associated critical exponents can

be computed ine expansion@8#. Other universality classes of
absorbing-state phase transitions have been identified; all of
them owe their existence to the presence of some additional
symmetry or conservation law with respect to the broad DP
class. Among them some example are the conserved parity
class, in which there are twoZ2-symmetric equivalent ab-
sorbing states@9,3#, dynamical percolation@10#, and the dif-
ferent classes of transitions with extra conservation laws
@11–13#.

In the group of pinned interfaces, the simplest continuous
model for depinning is the quenched Edwards-Wilkinson
equation, also called, ‘‘linear interface model’’~LIM ! @6,7#,

] th~x,t !5n¹2h~x,t !1F1h„x,h~x,t !…, ~2!

which describes an elastic interface~the Laplacian! at the
reference heighth(x,t), with surface tensionn, under the
influence of a constant external driving termF, and a
quenched noiseh„x,h(x,t)…. Equation~2! exhibits adepin-
ning transitionat a critical forceFc ; the interface configu-
ration and dynamics develop critical correlations in the vi-
cinity of the critical point. The standard approach for a
theoretical analysis of the LIM is the functional renormaliza-
tion group method. One-loop expressions for the minimal set
of exponents have been computed by Nattermannet al. @14#
on one hand, and by Narayan and Fisher@15# ~see also the
more recent work by Le Doussal and collaborators@16#!.
Here one enters technically and conceptually difficult terrain
due to the renormalization of the whole disorder correlator.
The outcome is that for noise fieldsh, which do not exhibit
extra translational symmetries, the expected depinning be-
havior follows, very generally, that resulting from a random-
field uncorrelated noise term: the LIM universality class
@14,15,17,18#. Other universality classes in the interfaces-in-
random-media realm are the quenched Kardar-Parisi-Zhang
~KPZ! equation@6,7,19# and the Edwards-Wilkinson equa-
tion with columnar noise@7,20#.
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Recent investigations~motivated by the analysis of sand-
pile models@21,22#, the archetype of systems exhibiting self-
organized criticality~SOC! @23#! have demonstrated that dif-
ferent models showing a continuous transition into an
absorbing phase and with an order parameter coupled lin-
early to an extra, nondiffusive conserved field~NDCF! be-
long to a unique universality class@13,24,25# that we will
refer to as NDCF class. This class differs from the extremely
robust DP class owing to the presence of an additional con-
servation law@12#. Moreover, the critical exponents of this
class seem, within numerical accuracy, equal to those of the
LIM class @5,13,24,25#. In Table I we present a comparison
of numerical results obtained for:~1! two different models
with a nondiffusive conserved field and many absorbing
states, namely the conserved threshold transfer process
~CTTR! @13,24#, and a conserved reaction-diffusion model
~CRD! @13,24#, ~2! the fixed energy version of the Manna
sandpile model and,~3! the LIM model. Observe that all the
reported exponents coincide within numerical accuracy in
both d52 andd53. This might be surprising at first sight,
as in CTTP and CRD models there is no quenched disorder,
as there is in LIM, and quenched disorder is usually a rel-
evant perturbation when it comes to universality issues.

From a different perspective this observation is not so
surprising, as different tentatives have been reported in the
literature in order to relate the dynamics of sandpiles to that
of elastic manifolds in random media, i.e., to the LIM model
@26,27#, and also the same sandpiles have been argued to
belong to the NDCF class@5,25#. Furthermore, there is an-
other viewpoint from which the coincidence between both
types of models is not so striking, namely, that provided by
the ‘‘run-time statistics’’ theory@28#. This theory establishes
that quenched disorder can be mapped rather generically into
long-range temporal correlations~i.e., a long-term memory!
in the activity field,~note this relation works also the other
way around! @30#, and has been recently applied with success
to the Bak-Sneppen model among others@29#. In the NDCF
class the presence of a conserved field plays the role of a
long-term memory@5,25# and, therefore, it is not a very big
surprise that it is equivalent to some sort of quenched disor-
der.

In this article we discuss in detail the relation between the
two presented groups of transitions, i.e., absorbing states

with a conserved field and pinned interfaces in random me-
dia, including annealed~or thermal! noise and quenched dis-
order, respectively. We will present heuristic arguments pro-
viding a theoretical explanation for so different systems
sharing the same universal critical behavior. The connection
between absorbing-state models in the DP class~without a
conserved field! and their interface representation has also
been recently considered in the literature@31#. In particular
the RFT was mapped into rather unusual interface equation,
not resembling any known interfacial problem.

The paper is structured as follows: We start in Sec. II by
presenting the RFT-like Langevin equation for the recently
introduced NDCF class. In Sec. III we present a prototypical
interface model in the LIM class, in particular, the cellular
automaton by Leschhorn@17# ~see also@18#! and work out a
derivation of a Langevin equation for the activity densityr,
paying particular attention to the way by which the noise can
be found. In Sec. IV we proceed conversely: we employ a
discrete mapping of a model with absorbing states in the
NDCF class into a continuous interface representation. We
end up with an interface equation, with several quenched
noise terms that reflect the microscopic rules and the thermal
noise applied in them. We discuss at this point the noise
correlations that arise and their relevance, with the aid of the
renormalization group~RG! literature. Finally, we present a
discussion and an Appendix in which we outline the relations
between the exponents in the two different pictures.

II. THE NDCF FIELD THEORY

One particular system in the NDCF class~out of the many
studied@13,24#! is a two-species reaction-diffusion model, in
which one of the species is immobile@11# ~see Sec. IV for a
detailed definition!. It has the great advantage of allowing for
a rigorous derivation of a coarse-grained field theory~or,
equivalently, a Langevin equation! via a Fock space repre-
sentation of the dynamics@11,24,32#. The result is in the
form of a Reggeon field theory coupled to an extra conserved
nondiffusive field, or what is equivalent, a RFT equation
with an extra non-Markovian term@5,24,25#. Quite remark-
ably this Langevin equation coincides~up to irrelevant
terms! with the one proposed previously, based only on sym-
metry and relevancy arguments, as the minimal Langevin

TABLE I. Critical exponents for steady-state experiments ind52 andd53. Models: CTTP, conserved
threshold transfer process; CRD, conserved reaction-diffusion model; Manna, Abelian Manna sandpile; LIM,
linear interface model. See the Appendix for exponent definitions.

b n' b/n' z

Steady-state exponentsd52
CTTP 0.64~1! 0.82~3! 0.78~3! 1.55~5!

CRD 0.65~1! 0.83~3! 0.78~2! 1.55~5!

Manna 0.64~1! 0.82~3! 0.78~2! 1.57~4!

LIM 0.64~2! 0.80~1! 0.80~3! 1.56~6!

Steady-state exponentsd53
CRD 0.86~2! 0.63~5! 1.39~4! 1.80~5!

Manna 0.84~2! 0.60~3! 1.40~2! 1.80~5!

LIM 0.84~2! 0.606~4! 1.38~2! 1.75~15!
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equation capturing the physics of NDCF, namely@5,24#,

]r~x,t !

]t
5ar~x!2br~x!21¹2r~x,t !2mc~x,t !r~x,t !

1sAr~x,t !h~x,t !,

]c~x,t !

]t
5D¹2r~x,t !, ~3!

plus higher-order terms, irrelevant from naive power count-
ing analysis@33#. Note that the second equation, describing
the evolution of the background conserved field~coarse-
grained representation of the total number of particles, which
is conserved in the microscopic model!, represents an static
nondiffusive field: in the absence of activity its dynamics is
frozen. Observe also that the second equation, being linear,
can be integrated out, and a closed equation for the activity
written down. More concretely,

c~x,t !5c~x,0!1DE
0

t

dt8¹2r~x,t8!. ~4!

The first contribution in Eq.~4!, a quenched~columnar! dis-
order, represents the initial condition, while the second is a
non-Markovian term. The Langevin equation~3!, even
though it looks rather similar to the RFT, has resisted all
renormalization attempts; therefore, predictions about critical
exponents coming from an epsilon expansion calculation are
not available so far. This might be an indication that some
type of functional renormalization group calculation is re-
quired, as is the case for the LIM equation, but this issue
needs certainly further insights to be clarified.

III. PHENOMENOLOGICAL ACTIVITY DESCRIPTION
OF LIM MODELS

We consider a representative of the LIM class, namely,
the Leschhorn-Tang~LT! cellular automation@17#. In order
to study its relation with standard systems with absorbing
states, we intend to cast it into a Langevin equation describ-
ing the evolution of a coarse-grained activity field@2#.

The LT automation is defined as follows. The interface
field h(x) satisfies at each discrete time stept i the following
equation:

h~x,t i 11!5H h~x,t i !11, f ~x,t i !.0

h~x,t i !, f ~x,t i !<0,
~5!

where the forcef is given by the combination of elasticity
and a random quenched pinning force as

f ~x,t i !5¹2h~x,t i !1h~x,h!. ~6!

¹2h(x) is the discrete Laplacian, i.e.,(NNh~NN!22Dh(x)
and NN denotes the nearest neighbors on a hypercubic lat-
tice. A reasonable choice for the noise is

h~x,h!5H 11, p

21, 12p
~7!

when p is a random number uniformly distributed between
zero and unity. This choice implies that the average driving
force isF5^ f &52p21. F plays the role of a control param-
eter. The critical point is estimated to be atpc;0.800@17#.

Now, at every time step, and at each site where the total
driving force exceeds its threshold value, i.e., at each
interface-site advance, we define an activity variable and set
it equal to one. On the other hand, in the remaining lattice
sites the corresponding activity takes a zero value. Addition-
ally, we also define at each site and time, a continuous
‘‘background’’ variable, equal to¹2h(x,t)1F. This controls
the probability of each interface site to advance at each time,
regardless of whether it actually slips or not. Let us empha-
size that this background variable is a conserved magnitude,
i.e., it takes a constant value, equal toF, when integrated
~summed! over the whole lattice. However, locally, it favors
or inhibits the generation of new activity. We now build up a
couple of equations for the evolution of the two fields: the
activity, r(x,t), and the background field,c(x,t), which are
the coarse-grained field analogous of the previously defined
site variables. Using the identification between activity and
ready-to-advance sites:h(x,t)5*0

t dt8r(x,t8)1h(x,0). Let
us write down a couple ofmean-fieldequations for the two
defined fields:

]r~x,t !

]t
52r~x,t !1r~x,t !G@c~x,t !#¹2r~x,t !, ~8!

c~x,t ![¹2h~x,t !1F5E
0

t

dt¹2r~x,t !1¹2h~x,0!1F,

~9!

whereG is an unknown functional of the background field.
The justification of the different terms is as follows:

~i! The term—r(x,t) describes the decay of active sites,
that after the corresponding interface advance become, in
general, nonactive. At a coarse-grained level higher-order
corrections, as2br2(x,t) may also appear. In particular,
they might play an important role in order to prevent the
activity from growing unboundedly, i.e., in stabilizing the
theory.

~ii ! 1r(x,t)G@c(x,t)# represents the fact that activity is
created in regions where some activity is already present, and
the rate of creation at each point is a function of the local
background field,c(x,t). Observe that the total contribution
of this term when integrated over the whole space has to be
zero, but locally it fosters or inhibits the creation of further
activity. Again, higher-order powers ofr(x,t) might also be
included.

~iii ! ¹2r(x,t) describes the diffusion of activity. This
terms appears generically for diffusive systems at a coarse-
grained scale.

~iv! In what respects thec(x,t) field, Eq. ~9!, we have
just written its definition by equatingh(x,t) to the number of
‘‘topplings’’ ~or activity events! at that point in all the pre-
ceding history, plus its initial value.

ExpandingG@c(x,t)# in power series, and keeping only
the leading contribution, we are left with a term
1lr(x,t)c(x,t) ~wherel is a constant! on the right-hand
side of Eq.~8! ~observe that the constant term in the Taylor
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expansion has to be zero as its integral has to be conserved,
as argued before!. A posteriori, we shall show that the omit-
ted terms, as well as higher-order corrections to the Laplac-
ian term, are irrelevant in what respects large scale,
asymptotic, properties.

In order to account for the system fluctuations~com-
pletely ignored so far! we now introduce a noise field con-
tribution to Eq.~8!. For that, as it is well known in theoret-
ical field descriptions of systems with absorbing states@2,3#,
a RFT noise term:sAr(x,t)h(x,t) is needed, wheres is a
constant andh a Gaussian white noise. This just reflects the
fact that, asr is a local coarse-grained variable its local
fluctuations are proportional to its square root~see@1–3# and
references therein!. It also captures the physical key ingredi-
ent: wherever activity vanishes locally, fluctuations are can-
celed@2#.

Before proceeding further, let us now discuss why the
quenched disorder of the microscopic model can be repre-
sented by an annealed noise in the derivation shown before.
The key point is the observation that in active regions, i.e.,
where the interface advances, a new noise variable is se-
lected at every time step and, as the interface does not return
to already passed regions, there is no need to store the mi-
croscopic noise history, and the noise can be freshly ex-
tracted from its probability distribution after every interface
advance. In this way, it becomes rather obvious that in de-
pinned ~active! regions, quenched and annealed noises are
fully equivalent at the microscopic level. Upon coarse grain-
ing, the noise can be expected to acquire a RFT-like charac-
ter as the correlations in the integrated activity, or number of
simultaneously active sites vanish on large enough scales.
More subtle is the connection between the two types of
noises with respect to pinned~absorbing! regions. While the
annealed noise,h changes in time even if there is no activity
in a given region, its variations are completely irrelevant as
the noise amplitude appears multiplied byAr50. Noise~in-
cluding its activity dependent amplitude! at a given spatial
point changes only whenever activity arrives to it, mimicking
perfectly what happens in the microscopic interface model,
where regions pinned under the influence of an unfavorable
quenched noise can be depinned only under the presence of
neighboring moving regions. Therefore, the considered time-
dependent noise, reproduces properly~at least qualitatively!
all the properties of the original quenched disorder.

The previous considerations lead finally to the following
Langevin equation for the activity field:

]r~x,t !

]t
5@211lF1l¹2h~x,0!#r~x,t !1¹2r~x,t !

1lr~x,t !E
0

t

dt8¹2r~x,t8!1sAr~x,t !h~x,t !,

~10!

where we have substitutedc by its expression coming from
Eq. ~9!. In general, the system is expected to lose memory of
the initial state for long enough times, therefore, the depen-
dence on¹2h(x,0) is expected to be washed out. However,
in some cases, as for instance one-dimensional~1D! systems,

due to the meager phase space, and the slow relaxation of the
initial condition, this might not be the case@34#.

Performing a perturbative, diagrammatic study of the pre-
vious Langevin equation it is easy to see~already at one-loop
level! that a new nonlinearity~vertex!, with the same degree
of relevancy as the nonlinear terms already present in the
theory~i.e., the nonlocal-in-time vertex and the noise one! is
perturbatively generated:r2(x,t). In fact, this term could
have been introduced also at a mean-field level, as pointed
out before, as a stabilizing term for the activity equation.

Including all the discussed terms into the equation forr,
and integrating the equation forc, we finally obtain

]r~x,t !

]t
52ar~x,t !2br~x,t !21lr~x,t !E

0

t

dt8r~x,t8!

1l¹2h~x,0!1¹2r~x,t !1sAr~x,t !h~x,t !,

~11!

wherea5211Fl andb.0 are constants. At this point, it
is a rather straightforward exercise to verify that no further
relevant terms are generated when including perturbative
~diagrammatic! corrections to the bare theory. Therefore, the
resulting Langevin equation is identical to the one proposed
for systems with an infinite number of absorbing states and
an activity field coupled to a static conserved field Eq.~3!
@5,13,24#.

Summing up, we have mapped a microscopic model be-
longing in the LIM class to the Langevin equation character-
izing the NDCF class. Though our derivation is not rigorous,
we believe it provides a strong evidence that in fact LIM and
NDCF define the same universality class.

IV. MAPPING A REACTION-DIFFUSION MODEL
TO DEPINNING

In this section we proceed conversely to the previous one:
starting from a microscopic model in the NDCF class we
map it onto the LIM continuous equation, Eq.~2!. To that
end we follow a recipe already applied to many sandpile
models exhibiting SOC@27#. Following @24# we consider a
two-species reaction-diffusion process on aLd lattice, with
particles of typesA and B involved. At each sitei, and at
each~discrete! time step the following reactions take place:

Bi→BNN , r d[1, ~12!

Ai1Bi→2Bi , r 1 , ~13!

Bi→Ai , r 2 . ~14!

TheAi , Bi denote particles of each kind at sitei. Ther’s are
the probabilities for the microscopic processes to occur: dif-
fusion r d , activationr 1 , and passivationr 2 . Without loss of
generality we will fix r d51, implying that, after having the
chance to react,B particles diffuse with probability one. Thus
one can define a phase boundary between the active and
absorbing phases in terms of ther 1 , r 2 probabilities, with a
phase transition in between. We assign occupation numbers
nA,i , nB,i to each site. As theA particles are nondiffusive,
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this system has an infinite amount of absorbing states defined
by nB,i50 for all i, with nA,i arbitrary.

Now we define~analogously to what is done for sandpiles
@5,27#! a height fieldH(x,t) which increases by one unit
every time a site gives one~or more than one! active, diffus-
ing B particle to one~or more than one! of its neighbors.
When this happens, we say, using the sandpile terminology,
that the site ‘‘topples.’’ In this way, theH field measures the
integrated activity atx up to timet.

The mapping to an interface automaton with quenched
noise is based on the fact that both, the reactions between the
A and B species, and the diffusion of particles can be ac-
counted for by looking at their net effects at every timeB
particles leave the sitex. One just has to look atnA andnB
when the site becomes active and a particle diffuses out. The
dynamics ofH can be written as

H~x,t11!5H H~x,t !11, f ~x,H !.0

H~x,t !, f ~x,H !<0,
~15!

which is formally identical to the Leschhorn automaton in
the LIM class, with a local ‘‘force’’ defined as

f ~x,H !5ntot~x,H !2j~x,H !, ~16!

wherentot(x,H)5nA(x,H)1nB(x,H) is the total number of
particles atx, andj is a local random threshold that results
from the microscopic processes. More concretely, the noisej
is defined as follows: Consider the sitex after theHth top-
pling, eithernB(x,H)50 or nB(x,H).0 ~this last can be the
case if and only if particles have arrived from the nearest
neighbors at the same time step!. In the first case, it will
remain zero until a particle arrives from a nearest neighbor
site; then one is free to choose a value forj(x,H) such that
it makes the forcef negative in the time interval between
topplingsH and H11. In the second case,nB(x) will fluc-
tuate owing to the microscopic passivation and activation
processes, either going tonB(x)50 or inducing a toppling at
the next time step. The relative probabilities of these two
alternatives, as derived from the microscopic dynamics, are
captured in thej(x,H) probability distribution.

Observe thatj depends solely upon the total number of
particles after the preceding toppling and the microscopic
dynamical rules. In particular, the largerntot the larger the
probability to have manyB particles and the larger the prob-
ability to topple. Let us also remark that the immobile grains
nA constitute a ‘‘pinning force’’~the larger their relative
number, the lesser the probability to topple!. The point-wise
noise fieldj(x,H) should have two-point weak correlations
in x since, in particular, it depends on the number of grains
received from the NN’s at the interface locationH(x) which
induces weak site-site correlations. The fact thatnA changes
slowly will make the H part of the noise correlator
^j(x,H)j(x8,H8)& less trivial than a simple delta function
d(H2H8).

Equation ~15! can be considered as a discrete interface
equation

DH

Dt
5u„f ~x,t !…. ~17!

It can be rewritten with the help of two particle fluxes:nx
in

andnx
out, are the number of grains added to or removed from

a given sitex up to timet, respectively. Let us also defineg
as the average number of particles given to the nearest neigh-
bors at each toppling event. It is clear that for long enough
timesnx

out'gH(x); relative deviations from this equality be-
ing negligible asymptotically. Defining also the average
value ofnx

in , n̄x
in , as n̄x

in5g/2d(xNN
H(xNN ,t), we can com-

pute a noiset(x,H) as the deviation ofnx
in with respect to its

average value,

t~x,t !5nx
in2

g

2d (
xNN

H~xNN ,t !. ~18!

In other words,t(x,t) counts the relative proportion of par-
ticles diffused out from the neighbors that actually arrive to
the site under consideration, compared with its average
value. A site to which particles have toppled in excess will
take a positive value oft, and, therefore, will be more likely
to topple in the following time steps. Notice that the con-
struction that yieldst is exact.

Plugging this into Eq.~16!, and using thatntot(x,t)
5ntot(x,0)1nx

in2nx
out, we can write@27#

f 5
g

2d
¹2H1F~x,0!2j~x,H !1t~x,H !, ~19!

whereF(x,0)[ntot(x,t50).
The discretization in Eq.~17! can be understood so that

the rules result in aneffectiveforce f 8 that is exactly unity
when the interface fieldH advances. ThusDH/Dt[ f 8u( f )
5 f 8u( f 8) @27#. This construction can be achieved by pick-
ing j to have exactly the right value in order to make the
force driving the interface equal to unity, if it is larger than
zero. One arrives finally at the discretized interface equation,

DH

Dt
5

g

2d
¹2H1F~x,0!2j~x,H !1t~x,H !. ~20!

Let us stress the presence of three different noise terms
~1! F(x,0) represents the original configuration of total

number of particle att50, and is, therefore, acolumnar
noise term @20#. It induces an initial transient regime until
eventually, the dynamics washes out the dependence of the
original configuration. In general, columnar disorder is irrel-
evant in the renormalization group sense as compared to
quenched noise; therefore, using relevancy arguments, it
could be eliminated, at least in high enough dimensions,
close or above the critical onedc54. Notice that this state-
ment is equivalent to the LIM symmetry, by which static
force fieldsF(x,0) ~independent ofH! is completely equiva-
lent to the existence of a nontrivial initial interface profile
H(x,t50). However, in low-dimensional systems, and in
particular ind51, due to the meager phase space, relaxation
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times might be huge, and the time needed to eliminate the
dependence on the initial particle distribution divergently
large @34#.

~2! The noise termj(x,H) represents the local threshold,
determining whether a site with someB particles topples at a
given time or, alternatively, they are transformed intoA par-
ticles by microscopic processes. It captures the in-site micro-
scopic dynamics, and depends essentially onntot , and on the
microscopic probabilities. In a nutshell, it says how many of
thentot particles are of typeA after the microscopic dynamics
has operated in the corresponding time step: if allntot are of
type A then j.ntot , and f ,0; conversely, if any of the
particles is of typeB thenj,ntot and f .0. Observe that if
the diffusion probability was smaller than unity, then we
should substitutej(x,H) by a ‘‘thermal noise’’j(x,t), i.e.,j
would change its value after every time step instead of
changing only after each toppling: this is due to the fact that
if r d,1 then a sitex including B-type particles could not
topple at timet @j(x,t) below threshold#, and do so at a
future time t8 @j(x,t8) above threshold#. This ‘‘thermal
noise’’ would generate a transition rounding off, but the criti-
cal exponents should not be affected by this irrelevant per-
turbation @14#. Therefore, we stick to the simplest caser d
51.

~3! The noise termt keeps track of the Brownian motion
of particles; i.e., it takes into account the fact that particles
are not homogeneously distributed among the NN, but one of
them is picked up randomly for each toppling event. It
changes slowly since the effect of the random choices~direc-
tions! on the configuration is slow. This is in particular true
since the noiset is conserving, as the number of particles is
conserved@and as can be seen by integrating Eq.~18!#. A key
point is that, analogously to what discussed in the preceding
section, the choice to give a particle to a certain neighbor can
be taken to be ‘‘quenched,’’ i.e., chosen in advance att50,
or ‘‘annealed,’’ i.e., decided on the spot. The correlator oft
can be generically written as

^t~x8,H8!t~x,H !&; f i~x82x! f'~H82H !. ~21!

The ~so far unknown! correlatorsf i and f' reflect the dis-
crete nature of the choices in the dynamics. Two microscopic
reasons lead immediately to nontrivial correlations int:

~a! The noisest at the NN’s of sitex are correlated due to
an exclusion effect: If a site gives out a diffusingB particle
to a neighbor, then all the other neighbors are excluded. The
actual coarse-grained noise correlations are harder to assess,
since the fluctuations in the particle flux thatt measures
make the interface to fluctuate, and thus a separable noise
correlator as Eq.~21! is hard to compute. The easiest way to
analyze the correlations among the different sites is, there-
fore, to compute the noise correlator from numerics of the
microscopic model, using the noise definition Eq.~18!. This
program has been pursued for sandpiles@27#.

~b! At each site the noise follows the dynamics of a ran-
dom walker. In fact, every time a nearest neighbor topples,
the choice~give the particle tox or to a different site! makes
it so that f';(H82H)1/2 since at every stept can go ‘‘up’’
or ‘‘down’’ with respect to the average.

Therefore, reciprocally to what was done in the preceding
section, we have mapped the reaction-diffusion process into
an interface equation. The dynamics of this interface equa-
tion follows exactly the history of a reaction diffusion pro-
cess, the details of which are mapped into the quenched
noisesj andt, and a columnar noiseF(x,0). Let us remark
that the existence of a conservation law has played a key role
in order to obtain a Laplacian in Eq.~20!.

Finally, using standard renormalization group arguments
about the relevancy of different operators, we can eliminate
higher-order irrelevant terms and noise correlations, and then
we are left with the LIM equation for point disorder@14,16#
~see also the Appendix!.

It must be emphasized, that the mapping works in both
ways, it is evident that the noise construction can be inverted
to yield a reaction diffusion process, that corresponds to an
interface model, assuming that the original noise terms have
the right correlation and conservation properties. The inter-
face model Eq.~20! resembles very much the one that cor-
responds to the Manna sandpile automaton, with the addition
of thej-noise term that is more point disorder like than thet
term.

Summing up, reciprocally to what was done in the pre-
ceding section, in this one, we have constructed a mapping
between a microscopic model in th NDCF class into the
Langevin equation for the LIM class.

V. DISCUSSION

We have presented strong heuristic evidence that, rather
generically, the universality class of systems with many ab-
sorbing states and order parameter coupled to a nondiffusive
conserved field, the NDCF class, and that of the linear inter-
face model with point-disorder coincide. This fact, already
pointed out from numerical simulations@5,13,24# is true at
least nearby the critical dimensiondc54, where relevancy
arguments are reliable. In low-dimensional systems (d51)
this equivalence could break down owing to the existence,
for example, of slow decaying initial conditions@34#. For the
frozen configurations in the point-disorder LIM it is known
that the correlations of the forcesh(x,H) acting on the in-
terface vanish. In the case of NDCF models, like the Manna
sandpile, such correlations~now computed from the particle
configuration in frozen configurations! may become nonzero:
this is a future avenue for numerical studies, but hopefully
this would be a irrelevant feature.

Likewise, if one considers a noise field for the LIM@Eq.
~7!# with nontrivial ~power law! bare correlations inx or H, it
is unclear at this point how these should be reflected in the
construction of a Langevin equation for the corresponding
activity field, like Eq. ~10!. Correlations in the local forces
~or ‘‘activity thresholds’’! will affect the way the coarse
graining works. For instance, due to the noise structure the
pinned and still-active regions will be correlated.

In order to establish the connection between the two
classes we have mapped a discrete interface model into the
Langevin equation characteristic of the NDCF class, and
conversely mapped a discrete model in the NDCF into the
well-known Langevin equation describing the LIM class. In
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order to have a more rigorous proof, one should be able to
map one Langevin equation into the other, but this, being the
Langevin equations coarse-grained representations of the mi-
croscopic models, is not an easy task to fulfill, and remains
an open challenge.

Let us remark that a similar problem remains also open;
namely, the rigorous connection between the quenched KPZ
@6,19# depinning transition and directed percolation depin-
ning @7,36# in two-dimensional systems,~and to directed sur-
faces in higher dimensions@37#!. It is clear from numerics,
that indeed these two universality classes coincide, but a sat-
isfactory proof of this fact is, to the best of our knowledge,
still lacking.

It was the hope, that the possibility of renormalizing the
NDCF Langevin equation using standard RG techniques, of
problem from the RFT-like equation approach, could shed
some light on the~in principle, technically more difficult and
obscure! functional renormalization group analysis required
for the interface equation with quenched noise. However, the
difficulties encountered in renormalizing, using standard per-
turbative schemes, the Langevin equation for NDCF@24,25#
are considerable; and have made all the attempts to renor-
malize the theory to fall through. It is rather likely that the
failure of standard RG attempts implies that a functional RG
scheme is needed in order to properly renormalize the theory,
analogously to what happens for the LIM equation. Renor-
malizing the NDCF Langevin equation and relating the de-
rived critical exponents to those obtained using functional
RG for LIM remains an open and very challenging problem.

Finally let us also point out that all the discussions pre-
sented in this work deal with the ‘‘constant force’’~in the
interface language! or ‘‘fixed energy’’ ~in the absorbing-state
terminology! ensemble. They can be easily extended to the
‘‘constant force’’ or ‘‘slow driving’’ ensemble@5,27#, in
which the system self-organizes into its critical state. This
point is, however, not essential since all evidence points to
the fact that if two models belong to the the universality
class, they continue to share the same set of critical expo-
nents upon changing ensemble.
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APPENDIX

The scaling of the phase transition in the absorbing-state
representation is characterized by the exponentsn' , n i , z,
andb. These describe the correlations in the activityr in the
spatial and time directions, the development of the correla-
tions in time, and the behavior ofr above the critical point,
respectively. One has the scaling relation

r̄~D,L !5L2b/n'R~L1/n'D!, ~A1!

where D is the distance to the critical point, andR is a
scaling function with R(x);xb for large x. For L@j
;Dn' we expectra;Db ~herej is the correlation length!.
When D50 we have thatra(0,L);L2b/n'. For D.0, by
contrast,ra approaches a stationary value, while forD,0 it
falls off asL2d. These can be used to establish the numerical
values of the exponents.

In the interface representation the relevant exponents are
n, z as above, with the convention thatn[n i . Usually it is
assumed that the dynamics is self-affine, which implies that
n'5xn i @6,7#. This defines the roughness exponentx that
characterizes the spatial correlations of the interface. If
‘‘simple scaling’’ @35,7# holds, then one has a unique rough-
ness exponent and we can write for the interface widthw

W2~ t,L !;H t2bw t!tx

L2a, t@tx
, ~A2!

using also the early-time exponentbw . If simple scaling
holds, we have the exponent relationbwz5a @35#. If only
one timescale is present, the growth exponent is related to
the activity time-decay exponent,u, via u1bW51 @31#.

For point-like disorder the first-loop functional renormal-
ization group result readsx5(42d)/3, and z522(4
2d)/9 @14#; see the extension to second order in@16#. From
these, using the exponent relations, the other exponents fol-
low. For rather generic bare disorder correlators the implica-
tion is that the full correlator flows in the renormalization to
this ‘‘random field’’ ~or point-disorder! fixed point function,
and thus the exponents are the same. However, numerics in
particular in 1D implies that the real exponents are different
from the one-loop results. This has recently been explained
in terms of two-loop corrections, but the traditional interpre-
tation has been in terms of ‘‘anomalous scaling’’@17,38#,
meaning that ast→`, the typical height difference between
neighboring sites increases without limit.
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