113 research outputs found

    Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition

    Full text link
    We examine metastable and transient effects both above and below the first-order decoupling line in a 3D simulation of magnetically interacting pancake vortices. We observe pronounced transient and history effects as well as supercooling and superheating between the 3D coupled, ordered and 2D decoupled, disordered phases. In the disordered supercooled state as a function of DC driving, reordering occurs through the formation of growing moving channels of the ordered phase. No channels form in the superheated region; instead the ordered state is homogeneously destroyed. When a sequence of current pulses is applied we observe memory effects. We find a ramp rate dependence of the V(I) curves on both sides of the decoupling transition. The critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR

    Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands

    Get PDF
    Land-use/cover change dynamics were investigated in a Mediterranean coastal wetland. Change Vector Analysis (CVA) without and with image texture derived from the co-occurrence matrix and variogram were evaluated for detecting land-use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July 1985, 1993 and 2005 were used, minimizing change detection error caused by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. CVA without and with texture measures were implemented and assessed using reference images generated by object-based supervised classification. These outputs were used for cross-classification to determine the ‘from–to’ change used to compare between techniques. The Landsat TM image bands together with the variogram yielded the most accurate change detection results, with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image pairs, respectively

    A Review of Magnetic Phenomena in Probe-Brane Holographic Matter

    Full text link
    Gauge/gravity duality is a useful and efficient tool for addressing and studying questions related to strongly interacting systems described by a gauge theory. In this manuscript we will review a number of interesting phenomena that occur in such systems when a background magnetic field is turned on. Specifically, we will discuss holographic models for systems that include matter fields in the fundamental representation of the gauge group, which are incorporated by adding probe branes into the gravitational background dual to the gauge theory. We include three models in this review: the D3-D7 and D4-D8 models, that describe four-dimensional systems, and the D3-D7' model, that describes three-dimensional fermions interacting with a four-dimensional gauge field.Comment: 35 pages, 27 figures, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee; references adde

    Meson Spectra and Magnetic Fields in the Sakai-Sugimoto Model

    Full text link
    We continue our study of the dynamics of the flavour sector of the Sakai-Sugimoto model in the presence of an external magnetic field, uncovering several features of the meson spectrum at high and low temperatures. We employ both analytical and numerical methods to study the coupled non-linear equations that result from the gravity dual.Comment: 44 pages, multiple figure

    Adding Flavor to AdS4/CFT3

    Full text link
    Aharony, Bergman, Jafferis, and Maldacena have proposed that the low-energy description of multiple M2-branes at a C4/Zk singularity is a (2+1)-dimensional N=6 supersymmetric U(Nc) x U(Nc) Chern-Simons matter theory, the ABJM theory. In the large-Nc limit, its holographic dual is supergravity in AdS4 x S7/Zk. We study various ways to add fields that transform in the fundamental representation of the gauge groups, i.e. flavor fields, to the ABJM theory. We work in a probe limit and perform analyses in both the supergravity and field theory descriptions. In the supergravity description we find a large class of supersymmetric embeddings of probe flavor branes. In the field theory description, we present a general method to determine the couplings of the flavor fields to the fields of the ABJM theory. We then study four examples in detail: codimension-zero N=3 supersymmetric flavor, described in supergravity by Kaluza-Klein monopoles or D6-branes; codimension-one N=(0,6) supersymmetric chiral flavor, described by D8-branes; codimension-one N=(3,3) supersymmetric non-chiral flavor, described by M5/D4-branes; codimension-two N=4 supersymmetric flavor, described by M2/D2-branes. Finally we discuss special physical equivalences between brane embeddings in M-theory, and their interpretation in the field theory description.Comment: 60 pages, 1 figure; v2: minor corrections, added two references, version published in JHE

    Phase Behavior of Type-II Superconductors with Quenched Point Pinning Disorder: A Phenomenological Proposal

    Full text link
    A general phenomenology for phase behaviour in the mixed phase of type-II superconductors with weak point pinning disorder is outlined. We propose that the ``Bragg glass'' phase generically transforms via two separate thermodynamic phase transitions into a disordered liquid on increasing the temperature. The first transition is into a glassy phase, topologically disordered at the largest length scales; current evidence suggests that it lacks the long-ranged phase correlations expected of a ``vortex glass''. This phase has a significant degree of short-ranged translational order, unlike the disordered liquid, but no quasi-long range order, in contrast to the Bragg glass. This glassy phase, which we call a ``multi-domain glass'', is confined to a narrow sliver at intermediate fields, but broadens out both for much larger and much smaller field values. The multi-domain glass may be a ``hexatic glass''; alternatively, its glassy properties may originate in the replica symmetry breaking envisaged in recent theories of the structural glass transition. Estimates for translational correlation lengths in the multi-domain glass indicate that they can be far larger than the interline spacing for weak disorder, suggesting a plausible mechanism by which signals of a two-step transition can be obscured. Calculations of the Bragg glass-multi-domain glass and the multi-domain glass-disordered liquid phase boundaries are presented and compared to experimental data. We argue that these proposals provide a unified picture of the available experimental data on both high-Tc_c and low-Tc_c materials, simulations and current theoretical understanding.Comment: 70 pages, 9 postscript figures, modified title and minor changes in published versio

    The L 98-59 System: Three Transiting, Terrestrial-Size Planets Orbiting A Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore