111 research outputs found

    Oncolytic Viruses: Do They Have a Role in Anti-Cancer Therapy?

    Get PDF
    Oncolytic viruses are replication competent, tumor selective and lyse cancer cells. Their potential for anti-cancer therapy is based upon the concept that selective intratumoral replication will produce a potent anti-tumor effect and possibly bystander or remote cell killing, whilst minimizing normal tissue toxicity. Viruses may be naturally oncolytic or be engineered for oncolytic activity, and possess a host of different mechanisms to provide tumor selectivity. Clinical use of live replicating viruses is associated with a unique set of safety issues. Clinical experience has so far provided evidence of limited efficacy and a favourable toxicity profile. The interaction with the host immune system is complex. An anti-viral immune response may limit efficacy by rapidly clearing the virus. However, virally-induced cell lysis releases tumor associated antigens in a ‘dangerous’ context, and limited evidence suggests that this can lead to the generation of a specific anti-tumor immune response. Combination therapy with chemotherapy or radiotherapy represents a promising avenue for ongoing translation of oncolytic viruses into clinical practice. Obstacles to therapy include highly effective non-specific host mechanisms to clear virus following systemic delivery, immune-mediated clearance, and intratumoral barriers limiting virus spread. A number of novel strategies are now under investigation to overcome these barriers. This review provides an overview of the potential role of oncolytic viruses, highlighting recent progress towards developing effective therapy and asks if they are a realistic therapeutic option at this stage

    Getting the invite list right : a discussion of sepsis severity scoring systems in severe complicated intra-abdominal sepsis and randomized trial inclusion criteria

    Get PDF
    Background: Severe complicated intra-abdominal sepsis (SCIAS) is a worldwide challenge with increasing incidence. Open abdomen management with enhanced clearance of fluid and biomediators from the peritoneum is a potential therapy requiring prospective evaluation. Given the complexity of powering multi-center trials, it is essential to recruit an inception cohort sick enough to benefit from the intervention; otherwise, no effect of a potentially beneficial therapy may be apparent An evaluation of abilities of recognized predictive systems to recognize SCIAS patients was conducted using an existing intra-abdominal sepsis (IAS) database. Methods: All consecutive adult patients with a diffuse secondary peritonitis between 2012 and 2013 were collected from a quaternary care hospital in Finland, excluding appendicitis/cholecystitis. From this retrospectively collected database, a target population (93) of those with either ICU admission or mortality were selected. The performance metrics of the Third Consensus Definitions for Sepsis and Septic Shock based on both SOFA and quick SOFA, the World Society of Emergency Surgery Sepsis Severity Score (WSESSSS), the APACHE II score, Manheim Peritonitis Index (MPI), and the Calgary Predisposition, Infection, Response, and Organ dysfunction (CPIRO) score were all tested for their discriminant ability to identify this subgroup with SCIAS and to predict mortality. Results: Predictive systems with an area under-the-receiving-operating characteristic (AUQ curve >= 0.8 included SOFA, Sepsis-3 definitions, APACHE II, WSESSSS, and CPIRO scores with the overall best for CPIRO. The highest identification rates were SOFA score >= 2 (78.4%), followed by the WSESSSS score >= 8 (73.1%), SOFA >= 3 (752%), and APACHE II >= 14 (68.8%) identification. Combining the Sepsis-3 septic-shock definition and WSESSS >= 8 increased detection to 80%. Including CPIRO score >= 3 increased this to 82.8% (Sensitivity-SN; 83% Specificity-SP; 74%. Comparatively, SOFA >= 4 and WSESSSS >= 8 with or without septic-shock had 83.9% detection (SN; 84%, SP; 75%, 25% mortality). Conclusions: No one scoring system behaves perfectly, and all are largely dominated by organ dysfunction. Utilizing combinations of SOFA, CPIRO, and WSESSSS scores in addition to the Sepsis-3 septic shock definition appears to offer the widest "inclusion-criteria" to recognize patients with a high chance of mortality and ICU admission.Peer reviewe

    Closed Or Open after Source Control Laparotomy for Severe Complicated Intra-Abdominal Sepsis (the COOL trial) : study protocol for a randomized controlled trial

    Get PDF
    Abstract Background Severe complicated intra-abdominal sepsis (SCIAS) has an increasing incidence with mortality rates over 80% in some settings. Mortality typically results from disruption of the gastrointestinal tract, progressive and self-perpetuating bio-mediator generation, systemic inflammation, and multiple organ failure. Principles of treatment include early antibiotic administration and operative source control. A further therapeutic option may be open abdomen (OA) management with active negative peritoneal pressure therapy (ANPPT) to remove inflammatory ascites and ameliorate the systemic damage from SCIAS. Although there is now a biologic rationale for such an intervention as well as non-standardized and erratic clinical utilization, this remains a novel therapy with potential side effects and clinical equipoise. Methods The Closed Or Open after Laparotomy (COOL) study will constitute a prospective randomized controlled trial that will randomly allocate eligible surgical patients intra-operatively to either formal closure of the fascia or use of the OA with application of an ANPTT dressing. Patients will be eligible if they have free uncontained intra-peritoneal contamination and physiologic derangements exemplified by septic shock OR a Predisposition-Infection-Response-Organ Dysfunction Score ≥ 3 or a World-Society-of-Emergency-Surgery-Sepsis-Severity-Score ≥ 8. The primary outcome will be 90-day survival. Secondary outcomes will be logistical, physiologic, safety, bio-mediators, microbiological, quality of life, and health-care costs. Secondary outcomes will include days free of ICU, ventilation, renal replacement therapy, and hospital at 30 days from the index laparotomy. Physiologic secondary outcomes will include changes in intensive care unit illness severity scores after laparotomy. Bio-mediator outcomes for participating centers will involve measurement of interleukin (IL)-6 and IL-10, procalcitonin, activated protein C (APC), high-mobility group box protein-1, complement factors, and mitochondrial DNA. Economic outcomes will comprise standard costing for utilization of health-care resources. Discussion Although facial closure after SCIAS is considered the current standard of care, many reports are suggesting that OA management may improve outcomes in these patients. This trial will be powered to demonstrate a mortality difference in this highly lethal and morbid condition to ensure critically ill patients are receiving the best care possible and not being harmed by inappropriate therapies based on opinion only. Trial registration ClinicalTrials.gov , NCT03163095

    Dendritic Cells Exposed to MVA-Based HIV-1 Vaccine Induce Highly Functional HIV-1-Specific CD8+ T Cell Responses in HIV-1-Infected Individuals

    Get PDF
    Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B

    The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease

    Get PDF
    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.We thank members of the Cambridge BioResource Scientific Advisory Board and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. K.D. is funded as a HSST trainee by NHS Health Education England. M.F. is funded from the BLUEPRINT Grant Code HEALTH-F5-2011-282510 and the BHF Cambridge Centre of Excellence [RE/13/6/30180]. J.R.S. is funded by a MRC CASE Industrial studentship, co-funded by Pfizer. J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator. S.M., S.T, M.H, K.M. and L.D. are supported by the NIHR BioResource-Rare Diseases, which is funded by NIHR. Research in the Ouwehand laboratory is supported by program grants from the NIHR to W.H.O., the European Commission (HEALTH-F2-2012-279233), the British Heart Foundation (BHF) to W.J.A. and D.R. under numbers RP-PG-0310-1002 and RG/09/12/28096 and Bristol Myers-Squibb; the laboratory also receives funding from NHSBT. W.H.O is a NIHR Senior Investigator. The INTERVAL academic coordinating centre receives core support from the UK Medical Research Council (G0800270), the BHF (SP/09/002), the NIHR and Cambridge Biomedical Research Centre, as well as grants from the European Research Council (268834), the European Commission Framework Programme 7 (HEALTH-F2-2012-279233), Merck and Pfizer. DJR and DA were supported by the NIHR Programme ‘Erythropoiesis in Health and Disease’ (Ref. NIHR-RP-PG-0310-1004). N.S. is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510). The INTERVAL study is funded by NHSBT and has been supported by the NIHR-BTRU in Donor Health and Genomics at the University of Cambridge in partnership with NHSBT. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the Department of Health of England or NHSBT. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship

    Therapeutic targeting of cathepsin C::from pathophysiology to treatment

    Get PDF
    Cathepsin C (CatC) is a highly conserved tetrameric lysosomal cysteine dipeptidyl aminopeptidase. The best characterized physiological function of CatC is the activation of pro-inflammatory granule-associated serine proteases. These proteases are synthesized as inactive zymogens containing an N-terminal pro-dipeptide, which maintains the zymogen in its inactive conformation and prevents premature activation, which is potentially toxic to the cell. The activation of serine protease zymogens occurs through cleavage of the N-terminal dipeptide by CatC during cell maturation in the bone marrow. In vivo data suggest that pharmacological inhibition of pro-inflammatory serine proteases would suppress or attenuate deleterious effects of inflammatory/auto-immune disorders mediated by these proteases. The pathological deficiency in CatC is associated with Papillon-Lefèvre syndrome. The patients however do not present marked immunodeficiency despite the absence of active serine proteases in immune defense cells. Hence, the transitory pharmacological blockade of CatC activity in the precursor cells of the bone marrow may represent an attractive therapeutic strategy to regulate activity of serine proteases in inflammatory and immunologic conditions. A variety of CatC inhibitors have been developed both by pharmaceutical companies and academic investigators, some of which are currently being employed and evaluated in preclinical/clinical trials

    Inflammatory mediators in intra-abdominal sepsis or injury – a scoping review

    Full text link
    corecore