288 research outputs found

    Arboretum: Reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules

    Get PDF
    Comparative functional genomics studies the evolution of biological processes by analyzing functional data, such as gene expression profiles, across species. A major challenge is to compare profiles collected in a complex phylogeny. Here, we present Arboretum, a novel scalable computational algorithm that integrates expression data from multiple species with species and gene phylogenies to infer modules of coexpressed genes in extant species and their evolutionary histories. We also develop new, generally applicable measures of conservation and divergence in gene regulatory modules to assess the impact of changes in gene content and expression on module evolution. We used Arboretum to study the evolution of the transcriptional response to heat shock in eight species of Ascomycota fungi and to reconstruct modules of the ancestral environmental stress response (ESR). We found substantial conservation in the stress response across species and in the reconstructed components of the ancestral ESR modules. The greatest divergence was in the most induced stress, primarily through module expansion. The divergence of the heat stress response exceeds that observed in the response to glucose depletion in the same species. Arboretum and its associated analyses provide a comprehensive framework to systematically study regulatory evolution of condition-specific responses.Howard Hughes Medical InstituteBroad Institute of MIT and HarvardNational Institutes of Health (U.S.) (Pioneer Award)National Institutes of Health (U.S.) (R01 2R01CA119176-01)Burroughs Wellcome Fund (Career Award at the Scientific Interface)Alfred P. Sloan Foundatio

    Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential

    Get PDF
    Cooking is widely recognized as an important source of indoor and outdoor particle and volatile organic compound emissions with potential deleterious effects on human health. Nevertheless, cooking emissions remain poorly characterized. Here the effect of herbs and pepper on cooking emissions was investigated for the first time to the best of our knowledge using state of the art mass spectrometric analysis of particle and gas-phase composition. Further, the secondary organic aerosol production potential of the gas-phase emissions was determined by smog chamber aging experiments. The emissions of frying meat with herbs and pepper include large amounts of mono-, sesqui- and diterpenes as well as various terpenoids and p-cymene. The average total terpene emission rate from the use of herbs and pepper during cooking is estimated to be 46 ± 5 gg-1 Herbs min-1. These compounds are highly reactive in the atmosphere and lead to significant amounts of secondary organic aerosol upon aging. In summary we demonstrate that cooking with condiments can constitute an important yet overlooked source of terpenes in indoor air

    Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry : Cooking Emissions

    Get PDF
    Cooking processes produce gaseous and particle emissions that are potentially deleterious to human health. Using a highly controlled experimental setup involving a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we investigate the emission factors and the detailed chemical composition of gas phase emissions from a broad variety of cooking styles and techniques. A total of 95 experiments were conducted to characterize nonmethane organic gas (NMOG) emissions from boiling, charbroiling, shallow frying, and deep frying of various vegetables and meats, as well as emissions from vegetable oils heated to different temperatures. Emissions from boiling vegetables are dominated by methanol. Significant amounts of dimethyl sulfide are emitted from cruciferous vegetables. Emissions from shallow frying, deep frying and charbroiling are dominated by aldehydes of differing relative composition depending on the oil used. We show that the emission factors of some aldehydes are particularly large which may result in considerable negative impacts on human health in indoor environments. The suitability of some of the aldehydes as tracers for the identification of cooking emissions in ambient air is discussed

    Monitoring Chemical Reactions with Terahertz Rotational Spectroscopy

    Get PDF
    Rotational spectroscopy is introduced as a new in situ method for monitoring gas-phase reactants and products during chemical reactions. Exploiting its unambiguous molecular recognition specificity and extraordinary detection sensitivity, rotational spectroscopy at terahertz frequencies was used to monitor the decomposition of carbonyl sulfide (OCS) over an aluminum nanocrystal (AlNC) plasmonic photocatalyst. The intrinsic surface oxide on AlNCs is discovered to have a large number of strongly basic sites that are effective for mediating OCS decomposition. Spectroscopic monitoring revealed two different photothermal decomposition pathways for OCS, depending on the absence or presence of H_2O. The strength of rotational spectroscopy is witnessed through its ability to detect and distinguish isotopologues of the same mass from an unlabeled OCS precursor at concentrations of <1 nanomolar or partial pressures of <10 μTorr. These attributes recommend rotational spectroscopy as a compelling alternative for monitoring gas-phase chemical reactants and products in real time

    State Variation in Squamous Cell Carcinoma of the anus incidence and Mortality, and association With Hiv/Aids and Smoking in the United States

    Get PDF
    PURPOSE: Squamous cell carcinoma of the anus (SCCA) incidence and mortality rates are rising in the United States. Understanding state-level incidence and mortality patterns and associations with smoking and AIDS prevalence (key risk factors) could help unravel disparities and provide etiologic clues. METHODS: Using the US Cancer Statistics and the National Center for Health Statistics data sets, we estimated state-level SCCA incidence and mortality rates. Rate ratios (RRs) were calculated to compare incidence and mortality in 2014-2018 versus 2001-2005. The correlations between SCCA incidence with current smoking (from the Behavioral Risk Factor Surveillance System) and AIDS (from the HIV Surveillance system) prevalence were evaluated using Spearman\u27s rank correlation coefficient. RESULTS: Nationally, SCCA incidence and mortality rates (per 100,000) increased among men (incidence, 2.29-3.36, mortality, 0.46-0.74) and women (incidence, 3.88-6.30, mortality, 0.65-1.02) age ≥ 50 years, but decreased among men age \u3c 50 years and were stable among similar-aged women. In state-level analysis, a marked increase in incidence (≥ 1.5-fold for men and ≥ two-fold for women) and mortality (≥ two-fold) for persons age ≥ 50 years was largely concentrated in the Midwestern and Southeastern states. State-level SCCA incidence rates in recent years (2014-2018) among men were correlated ( CONCLUSION: During 2001-2005 to 2014-2018, SCCA incidence and mortality nearly doubled among men and women age ≥ 50 years living in Midwest and Southeast. State variation in AIDS and smoking patterns may explain variation in SCCA incidence. Improved and targeted prevention is needed to combat the rise in SCCA incidence and mitigate magnifying geographic disparities

    CYP2A6 metabolism in the development of smoking behaviors in young adults

    Get PDF
    Cytochrome P450 2A6 (CYP2A6) encodes the enzyme responsible for the majority of nicotine metabolism. Previous studies support that slow metabolizers smoke fewer cigarettes once nicotine dependent but provide conflicting results on the role of CYP2A6 in the development of dependence. By focusing on the critical period of young adulthood, this study examines the relationship of CYP2A6 variation and smoking milestones. A total of 1209 European American young adults enrolled in the Collaborative Study on the Genetics of Alcoholism were genotyped for CYP2A6 variants to calculate a previously well-validated metric that estimates nicotine metabolism. This metric was not associated with the transition from never smoking to smoking initiation nor with the transition from initiation to daily smoking (P > 0.4). But among young adults who had become daily smokers (n = 506), decreased metabolism was associated with increased risk of nicotine dependence (P = 0.03) (defined as Fagerström Test for Nicotine Dependence score ≥4). This finding was replicated in the Collaborative Genetic Study of Nicotine Dependence with 335 young adult daily smokers (P = 0.02). Secondary meta-analysis indicated that slow metabolizers had a 53 percent increased odds (OR = 1.53, 95 percent CI 1.11-2.11, P = 0.009) of developing nicotine dependence compared with normal metabolizers. Furthermore, secondary analyses examining four-level response of time to first cigarette after waking (>60, 31-60, 6-30, ≤5 minutes) demonstrated a robust effect of the metabolism metric in Collaborative Study on the Genetics of Alcoholism (P = 0.03) and Collaborative Genetic Study of Nicotine Dependence (P = 0.004), illustrating the important role of this measure of dependence. These findings highlight the complex role of CYP2A6 variation across different developmental stages of smoking behaviors

    HIV Partner Notification Is Effective and Feasible in Sub-Saharan Africa: Opportunities for HIV Treatment and Prevention

    Get PDF
    Sexual partners of persons with newly diagnosed HIV infection require HIV counseling, testing and, if necessary, evaluation for therapy. However, many African countries do not have a standardized protocol for partner notification and the effectiveness of partner notification has not been evaluated in developing countries

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore