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ABSTRACT: Rotational spectroscopy is introduced as a new in situ Optical
method for monitoring gas-phase reactants and products during |
chemical reactions. Exploiting its unambiguous molecular recognition
specificity and extraordinary detection sensitivity, rotational spectros-
copy at terahertz frequencies was used to monitor the decomposition
of carbonyl sulfide (OCS) over an aluminum nanocrystal (AINC)
plasmonic photocatalyst. The intrinsic surface oxide on AINCs is
discovered to have a large number of strongly basic sites that are
effective for mediating OCS decomposition. Spectroscopic monitor-
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ing revealed two different photothermal decomposition pathways for

OCS, depending on the absence or presence of H,O. The strength of rotational spectroscopy is witnessed through its ability to
detect and distinguish isotopologues of the same mass from an unlabeled OCS precursor at concentrations of <1 nanomolar or
partial pressures of <10 yTorr. These attributes recommend rotational spectroscopy as a compelling alternative for monitoring

gas-phase chemical reactants and products in real time.
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hromatography and mass spectrometry are universally
established as the gold standards for analyzing the
products of chemical reactions in the laboratory. While both
chromatography and mass spectrometry have proven invaluable
over the past several decades, there are limitations to each
technique. In chromatography, molecular species are separated
and analyzed based on elution dynamics on a chromatography
column; however, it can be difficult to discriminate between
enantiomers, particularly among isotopically labeled products,
without highly specialized equipment. Mass spectrometry can
easily distinguish between many isotopically labeled species, but
small molecules can frequently have overlapping mass frag-
ments (ie, H,O and NH; or CO and N,) that complicate
interpretation. Chromatography can be coupled with mass
spectrometry to separate and identify reactants and products,
but such measurements must be performed ex situ, excluding
the possibility of real-time monitoring of reaction processes.
Here we introduce terahertz (THz) rotational spectroscopy
as a new tool for monitoring gas-phase reactants and products
of chemical reactions in situ. Rotational spectroscopy has
several distinct advantages not achievable with existing
techniques. It has the ability to distinguish molecules with
absolute recognition sensitivity, including the facile discrim-
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ination of isotopologues.”” This is particularly important in the
study of molecular decomposition reactions, including the
mediation of toxic or environmentally hazardous chemicals, for
which multiple small-molecule reaction products may be
formed.”> Rotational transitions and their associated line
strengths are very well known, allowing for highly sensitive,
calibrated, quantitative measurements to be performed for
concentrations <1 nanomolar or partial pressures of <10
uTorr.”> This extraordinary sensitivity makes it possible to
detect low concentrations of desired or even harmful
byproducts in chemical processes. Rotational spectroscopy
can be integrated within a gas-phase reaction chamber to
monitor the evolution of multiple reactants and products as a
function of time. Although detection is limited to gas-phase
molecules with permanent dipole moments, this combination
of unambiguous recognition specificity and sensitive detection
makes rotational spectroscopy an extremely powerful tool for
deducing chemical reaction pathways and quantitatively
measuring reaction outcomes.
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To illustrate these advantages, we explored photocatalytic
molecular decomposition by laser-illuminated metal nano-
particles. The exploitation of collective oscillations in free-
electron density within metallic nanostructures, also known as
localized surface plasmons resonances (LSPRs), has become a
major topic in nanoscience over the last two decades.””” The
recent introduction of plasmonic nanomaterials as heteroge-
neous photocatalysts in chemistry has initiated a new and
potentially transformative field of study, where plasmonic
nanomaterials may greatly reduce the energy requirements of
chemical reactions and control product specificities.'’ Plas-
monic photocatalysts can drive chemical reactions on their
surfaces in at least two ways: by the generation of hot carriers
that induce bond dissociation following transfer to an
unoccupied molecular orbital of an adsorbate or by localized
photothermal excitation of adsorbate molecules. Numerous
plasmon-mediated chemical reactions have been demonstrated,
including water splitting,'' hydrogen generation,"” ethylene
epoxidation,"”” CO oxidation,"* selective hydrogenation,"
reverse water—gas shift,'® and the Sabatier reaction.'” It was
recently shown that plasmonic nanomaterials can even be
combined with conventional catalytic nanoislands or surface
epilayers to form “antenna—reactor” complexes to expand the
scope of this approach further."

In this report, aluminum nanocrystals (AINCs)"® were used
as an earth-abundant plasmonic photocatalyst to decompose
carbonyl sulfide (OCS). OCS was selected as a model
compound to demonstrate the applicability of rotational
spectroscopy to monitor plasmon-mediated decomposition in
situ. Infrared spectroscopy and temperature-programmed
desorption studies indicate heightened catalytic activity of the
amorphous AINC oxide coating, while rotational spectrometry
data show how the presence or absence of adsorbed water
determines the decomposition pathways of OCS. OCS is
classified as a toxic industrial compound (TIC): a material that
exhibits chemical hazards (carcinogen, corrosive, etc.) or
physical hazards (explosive, flammable, etc.). The detection
and remediation of TICs is critically important for mitigating
workplace hazards and preventing catastrophic environmental
events.

B RESULTS AND DISCUSSION

Photocatalytic Reaction Chamber. A photocatalytic
reaction chamber was constructed to enable in situ monitoring
of gas-phase plasmon-mediated reactions by THz rotational
spectroscopy. Rotational absorption spectroscopy offers
absolute recognition specificity and quantitative concentration
measurements from known transition frequencies and
absorption coeflicients, respectively. The recognition specificity
derives from the fact that the quantized energy levels for
rotational motion depend sensitively on the molecule’s
moments of inertia.”” Because the spacing between those
energy levels are small compared to kT, dozens of levels are
thermally populated at room temperature, allowing a
comparable number of rotational transitions to be measured.
Since these rotational lines are narrow (~1 MHz) at low
pressures (<0.1 Torr), absorption line frequencies are routinely
measured in the THz spectral region with at least seven digits
of accuracy (<10 kHz precision). This allows for a plethora of
lines to be measured and the molecule to be unambiguously
identified. Concentration measurements are made possible by
tables of calculated transition line strengths available for most
molecules of interest.'””" Experimentally calibrated measure-
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ments of these line strengths provide the means to ascertain
molecular concentrations quantitatively. Moreover, Schottky
diode detectors coupled with standard phase-sensitive source
frequency modulation techniques permit sensitive detection of
analytes to very low concentrations.

A generalized schematic of the reaction chamber is shown in
Figure la. The experimental apparatus consists of six major
components: (i) THz source, (ii) UV/visible light source, (iii)
ultra-high vacuum (UHV) reaction chamber, (iv) sample stage
for the catalyst, (v) THz detector, (vi) gas delivery and vacuum
manifold system. The reaction chamber consists of a five-way
cross-shaped tubing that houses the plasmonic photocatalyst
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Figure 1. Rotational spectrometer for plasmonic photocatalysis. (a)
Tlustration of the reaction chamber used in this study. (b) An example
histogram of integrated absorption intensity for carbonyl sulfide
(orange) and carbon monoxide (blue) at 0—1000 GHz. (c) Example
of a single rotational transition (J = 18—19) for eight isotopologues of
carbonyl sulfide. Integrated line strengths plotted as a histogram in (b)
and (c) were acquired from refs 4 and 19, respectively. (d) A tunable,
frequency-doubled Ti:sapphire laser is used as an optical pump to
excite the localized surface plasmon resonance of the chosen catalyst.
A THz probe simultaneously monitors the composition of gas in the
UHV reaction chamber. The modulated absorption signal from
reactants (shown left; orange) decreases as a function of time, while
the modulated absorption signal from any products (shown right;
blue) increases as a function of time.
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and allows the introduction and removal of gases. The four in-
plane arms have optical ports that permit the transmission of
the optical pump (vertical) and THz probe (horizontal) beams.
The catalyst is positioned above the bottom viewport and
attached on a custom feedthrough consisting of a heating stage
and a type-K thermocouple. The fifth arm of the reaction
chamber is connected to an additional assembly to allow for the
introduction (<107 Torr) or evacuation (base pressure <107
Torr) of gases through a vacuum manifold. While low operating
pressures allow for absolute molecular recognition of narrow,
well-characterized rotational transitions, reaction rates are
constrained by gas diffusion and surface migration to active
sites on the illuminated catalyst. A full schematic of the reaction
chamber is shown in Figure S2 as well as an electronics diagram
for the experimental apparatus in Figure S3.

To demonstrate the recognition specificity of this technique,
a histogram of integrated intensities for OCS and CO rotational
transitions as a function of frequency between 0 and 1 THz is
shown in Figure 1b as orange and blue bars, respectively. The
different moments of inertia of these two linear molecules
produce drastically different rotational spectra, shown by the 81
transitions of OCS and eight transitions of CO in the same
frequency range. Even the small moment of inertia differences
in isotopic variants of the same molecule produce large, easily
distinguishable frequency shifts for a given rotational transition.
For example, the | = 18—19 transition for eight isotopologues
of OCS have been plotted, showing the integrated transition
intensity as a function of frequency (Figure 1c).” Since the
low-pressure line widths of these eight transitions are <1 MHz,
yet the rotational transition frequencies for each isotopologue
are distributed across 20 GHz, their distinct spectral finger-
prints are easily resolved.

The strength of rotational transitions, which depend on the
moments of inertia and centrifugal distortions of the molecule,
its dipole moment and transition matrix elements, state
degeneracies, and Boltzmann population distributions, may be
calculated precisely using quantum mechanical models.">"**°
For example, the transition frequencies and strengths for
hundreds of molecules are available from the Jet Propulsion
Laboratory (JPL) molecular spectroscopy database.” In Figure
1b,c, we are only plotting integrated line strength intensities as
a function of frequency because the actual line shape is
unresolvable for the scale of these plots. Experimentally, we
measure the line strength of known rotational transitions by
sweeping a frequency-tunable terahertz source across their
Doppler- or pressure-broadened absorption line shapes and
measure the fractional absorption of the probe beam as it is
transmitted through the 10 cm long absorption chamber and
detected with a Schottky diode detector.

To detect weak spectral lines above a background of strong,
broad standing-wave power variations in the spectrometer, we
adopted the well-known spectroscopic techniques of source
frequency modulation and phase-sensitive detection.”’ By
selecting a modulation depth comparable to the line width of
the rotational transition and using a lock-in amplifier to
measure the strength of the modulated signal at twice the
modulation frequency, we record a line shape that approximates
the second derivative of the actual line shape while flattening
the baseline. This method allows differential amplification and
filtering of the line itself, which is then fit with a matched Voigt
profile to recover the unmodulated line shazpe from which the
integrated line strength may be measured.”” To convert these
line strengths into absolute partial pressures of the associated
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gases in the chamber, an initial calibration of the spectrometer
is performed in which a gas of known pressure is introduced
into the chamber and its measured integrated line strength is
compared with that of the JPL database. From this comparison,
molecule- and spectrometer-dependent conversion factors are
obtained that are then applied to each measured molecular gas
of interest. In this manner, our experimental apparatus can
monitor photocatalytic chemical transformations in situ while
using the THz probe to monitor the decrease of reactants and
increase of products simultaneously (Figure 1d). On the left
and right of Figure 1d we show a generalized spectral line shape
that is obtained using frequency-modulated rotational spec-
troscopy. Further discussion regarding the specific parameters
affecting frequency-modulated rotational spectroscopy and how
this technique obtains quantitative molecular concentrations
over many orders of magnitude is included in the Supporting
Information and will be detailed extensively in an upcoming
publication.

A critical aspect of this experimental technique is the ability
to use any molecular reference to calibrate for all detectable
molecular species. Calibration, which correlates measured line
strengths to known chamber pressures for a well-known
molecular species, is necessary to quantify the concentration of
all reactants, gas-phase intermediates, and products, especially
for species where independent calibration is difficult (e.g,
H,0). To demonstrate this, a calibration curve that relates
measured OCS line strengths to measured OCS pressure
predicted CO concentrations from subsequently measured line
strengths to within ~10%, as confirmed with a separate CO
calibration curve. This accuracy was achieved by simply
adjusting for the ratio of the calculated line strengths in the
JPL molecular spectroscopy database and for the ratio of the
detected power in an empty chamber at the associated OCS
and CO transition frequencies.” By this internal calibration
procedure the measured line strength for any molecule
measures its concentration. The small ~10% disagreement,
caused by small power variations and modulation imperfections
in the spectrometer during an experiment, was smaller than the
day-to-day drift in this early prototype, so a common
calibration curve was used in the measurements reported here
(see Figure S1) to illustrate the concept at the cost of
concentration uncertainties no larger than +20%.

Plasmon-Mediated Decomposition of Carbonyl Sul-
fide. OCS was chosen as a model compound due to the strong
rotational transition strengths of OCS and its possible
decomposition products (i.e, CO and/or H,S). The chemistry
of OCS has been well explored,””** and several methods for its
mitigation have been reported, such as hydrogenation,”
hydrolysis,”® photolysis,”” and oxidation.***” Of these,
hydrolysis is generally recognized as the most promising due
to its high conversion efficiencies and mild reaction
conditions.”” The preferred catalysts for OCS hydrolysis are
metal oxides, particularly aluminum oxide, although titanium
and magnesium oxides are used today in certain industrial
processes.”’

Previous studies on OCS decomposition over aluminum
oxide powders have revealed that the active sites are basic’' and
that the rate of OCS decomposition is related to the basicity of
those active sites.>” Therefore, the likelihood that the intrinsic
2—4 nm thick aluminum oxide surface layers of AINCs also
have basic sites makes them strong candidates for OCS
decomposition. In addition to their surface chemistry, AINCs
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represent an earth-abundant alternative to Au and Ag for
plasmon-mediated catalysis.

The AINCs used in this studz were synthesized using a
previously described protocol.'® A transmission electron
micrograph shows the general morphology of the ~70 nm
diameter AINCs used in this experiment (Figure 2a), and
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Figure 2. Plasmonic decomposition of carbonyl sulfide. (a) Trans-
mission electron micrograph of ~70 nm diameter aluminum
nanocrystals used as the catalyst in this study. (b) Amplitude of the
OCS J = 18—19 transition at 231.061 GHz before (left) and after 60
min of illumination (right). (c) Amplitude of the CO J = 1-2
transition at 230.538 GHz before (left) and after 60 min of
illumination (right).

AINC:s of this diameter possess a plasmon resonance at 4 = 400
nm (Figure S4). During the reaction, the AINCs were
supported at 10 wt % loading on acid-washed and calcined
SiO, with a particle size distribution between 0.5 and 10 pm
and 80% between 1 and 5 um.”> OCS decomposition takes
place on the native oxide surface of the AINCs. In this sense,
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. 1
the AINCs are behaving as “antenna—reactor” nanocomplexes

where the plasmon resonance of the Al core is enhancing
catalytic activity on the intrinsic surface oxide. After OCS
adsorption to the oxide surface, it has been proposed in the
well-studied hydrolysis mechanism that a surface hydrogen
thiocarbonate (HTC) species is formed.”**"** However, after
HTC formation, the mechanistic pathwagf can diverge based on
water content in the reaction system.”> These two pathways
have been referred to as the (1) “CO reaction” and (2) the

“CO, reaction”.”
OCS — CO + §* (1)
OCS + H,0 — CO, + H,S (2)

To demonstrate the CO reaction (1), the catalyst was loaded
into the reaction chamber, and the vacuum system and catalyst
stage were held at ~300 °C for 24 h to desorb H,O and other
possible molecular contaminants from their surfaces. After
allowing the experimental apparatus to return to room
temperature, a nominal pressure of 30.7 mTorr OCS was
introduced into the reaction chamber. While sequentially
measuring selected rotational transitions of OCS, CO, H,0,
and H,S approximately once per minute in the 210—360 GHz
region spanned by the spectrometer, a pulsed laser with an
average power density of ~5 W/cm?® and a wavelength of 404
nm was scanned over the catalyst surface to excite the LSPR of
the AINCs. The pressure in the chamber, which can vary from
experiment to experiment, was measured by a capacitance
manometer capable of pressure measurements between 0 and
100 mTorr.

At the beginning of the experiment, only OCS is detectable
(Figure 2b,c left), with CO excluded to its detection threshold
of 22 uTorr, or 1.2 pmol/cm® (1.2 nanomolar) given our
chamber volume of 1.8 L. Over the course of a reaction, only
OCS and CO spectra were observed, and the line strength of
OCS diminishes while CO increases and becomes the
dominant species in the chamber (Figure 2b,c right). By
referencing the integrated Voigt profiles obtained from
measured OCS and CO spectra during the decomposition
reaction to the calibration curves measured from pure OCS and
CO (Figure S1), respectively, the experimental pressures
throughout the reaction could be calculated (Figure 3a).
Prior to laser illumination, adsorption onto the catalyst reduced
the OCS pressure. As the laser scanned over the catalyst
surface, photothermal decomposition of OCS increased the
partial pressure of CO to 24.2 mTorr after 2 h, while the initial
OCS partial pressure, measured using the integrated Voigt
profile to be 37.1 mTorr, fell to 5.1 mTorr, confirming the
causal relationship between the observed OCS decomposition
and CO evolution. Neither H,O nor H,S was observed; their
line strengths and associated concentrations stayed below their
respective detection limits of 1.06 and 0.45 pmol/cm® or 19.8
and 8.3 puTorr, respectively. Importantly, the detection
threshold is molecule-dependent and influenced by several
parameters, including the strength of the molecule’s dipole
moment, temperature, the fraction of molecules in the lower
state, the power of the source, the noise in the detector/
amplifier system, the modulation depth, the time constant of
the lock-in amplifier, and the integration time of the acquisition
system (see Supporting Information for specific details).

When the catalyst is not pretreated at high temperatures and
partial pressures of H,O are above the detection threshold of
~1 pmol/cm? the “CO reaction” is suppressed in favor of the
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Figure 3. Temporal decomposition of carbonyl sulfide. (a)
Decomposition and evolution of OCS and CO after pretreating the
catalyst and chamber to remove excess H,O. Laser illumination of the
catalyst began ~10 min after introducing OCS into the chamber. (b)
Under constant laser illumination, OCS decomposition in the
presence of H,O shows appreciable yields of H,S while minimizing
yields of CO. OCS and CO pressures were obtained using their
measured line strengths and respective calibration curves. H,O and
H,S pressures were obtained using their measured line strengths and
the internal calibration method referenced to the OCS calibration
curve (Figure S1).

“CO, reaction” (Figure 3b). In the well-studied hydrolysis
mechanism, H,O plays the crucial role of protonating the HTC
species, producing H,S and CO, as the sole gaseous
byproducts. In our experiments, when the photocatalyst is
not heated under vacuum and H,O remains a prominent
species after the introduction of OCS, we observe reactivity
consistent with a hydrolysis mechanism. During the experi-
ment, a nominal pressure of 8.6 mTorr of OCS was introduced
to the reaction chamber, as measured by the capacitance
manometer, but Figure 3b indicates the maximum pressure
calculated by the integrated Voigt fit method was only 7.6
mTorr. A constant pressure of ~3.5 mTorr H,O was measured
throughout the experiment, suggesting an equilibrium was
established and that the reaction chamber contained appreci-
able H,O on the catalyst surface and chamber walls. The
production of CO is greatly suppressed over the course of 60
min, and detection of a maximum partial pressure of ~1.7
mTorr H,S is observed. The signal from H,S dissipates over the
course of the reaction due to strong adsorption on the catalyst
and chamber walls (Figure SS5). After 60 min the only
molecular signature remaining was H,O. In this case, H,0O
promotes OCS hydrolysis on the AINC surface, producing CO,
and H,S, of which only the latter could be detected using
rotational spectroscopy. The H,S yield was not observed to be
stoichiometric because of strong adsorption to the catalyst and
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chamber surfaces while being produced. The remaining partial
pressure measured by the capacitance manometer in the
reaction chamber is most likely CO,, but its presence could not
be verified explicitly using rotational spectroscopy. The effect of
H,0 in OCS decomposition is 3-fold. First, H,O acts as a
competitive adsorbate with OCS, poisoning basic sites.*
Second, H,0 promotes CO, production through the traditional
hydrolysis mechanism, consuming OCS in the process.”" Third,
any formation of CO in the presence of H,O may undergo the
reverse water gas shift reaction (CO + H,0 < CO, + H,),
producing H, and CO,,” neither of which can be measured
directly in our system due to their lack of a permanent dipole.
Under these conditions, the reaction reaches a steady state after
~30 min, most likely after proceeding through rapid OCS
hydrolysis and subsequently reaching equilibrium of the water—
gas shift reaction.

Aluminum Nanocrystal Surface Chemistry. When the
AINC catalyst was pretreated at 300 °C, driving off adsorbed
H,O and activating strong basic sites on its surface oxide in the
process, CO was the sole gaseous byproduct detected by the
rotational spectrometer (Figure 3a). Reports of high-temper-
ature OCS decomposition have shown that the “CO reaction”
is not only 7possible, it is kinetically preferred to the “CO,
reaction”.””” We hypothesize that a thiocarbonate surface
intermediate is created by the interaction of OCS with the basic
oxide on the AINCs, and photothermal heating subsequently
forms and desorbs CO. High laser power density illumination
of plasmonic AINCs under UHV likely induces high surface
temperatures, promoting a photothermal pathway. Sulfur is
known to be left behind on the surface as sulfites (SO;~) and
sulfates (SO,>7), leading to catalyst deactivation by the creation
of Bronsted acid sites at the expense of the active basic sites.”®
Deactivation of the AINC catalyst over time and the inability of
simple heating to regenerate the original activity have been
observed, supporting this high-temperature decomposition
pathway. Additionally, no sulfur-containing species (i.e, H,S)
are observed as gas-phase products when high-temperature
pretreatment sufficiently removes H,O from the reaction
chamber. X-ray photoelectron spectroscopy was attempted in
order to probe the catalyst surface after OCS decomposition to
check for sulfur, but since the concentration of reactants is on
the order of 50 mmol of sulfur per gram of catalyst, and
distributed throughout the entire volume, any newly formed
surface species would be beyond the detection limit of surface-
sensitive techniques.

Since the active sites for OCS decomposition on metal oxides
are basic in nature, typically monodentate surface hydroxyls,”’
the observed high activity of OCS decomposition on AINCs
suggests a high abundance of strongly basic sites. To
understand these active sites on the AINC plasmonic
photocatalyst, the quantity and constitution of acidic and
basic sites were probed using a combination of probe-molecule
temperature-programmed desorption (TPD) and infrared (IR)
spectroscopy experiments. Identical measurements were
conducted on commercial y-Al,0; powders to compare with
the amorphous oxide surrounding the AINC photocatalyst.

To quantify the number of basic sites, AINCs and
commercial y-Al,O; were pretreated at different temperatures
between 300 and 500 °C in He and then were cooled to 30 °C
under a continuous flow of He (to degas the sample). Pulsed
CO, chemisorption was then performed until saturation,
followed by a CO, TPD measurement. CO, chemisorption
experiments, normalized to surface area, revealed that AINCs
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Figure 4. Surface chemistry of aluminum nanocrystals. (a) CO, pulsed chemisorption at different pretreatment temperatures of AINCs (green) and
7-ALO; (purple) to measure the number of basic sites on the oxide surface. (b) Representative temperature-programmed desorption of CO, from
AINCs (green) and y-ALO; (purple) pretreated at 300 °C under 50 sccm He flow while ramping to 350 °C at a rate of 60 °C/min. (c) Pyridine
adsorption infrared spectroscopy showing chemisorbed pyridine on acidic sites on AINCs (green) and y-Al,O; (purple). (d) NH; temperature-
programmed adsorption showing acidic site reactivity on AINCs (green) and y-Al,O; (purple). (e) Methanol temperature-programmed desorption
on y-ALO; (300 °C pretreatment) showing primarily dimethyl ether (DME) desorption, confirming mostly acidic surface sites. (f) Methanol
temperature-programmed desorption on AINCs (300 °C pretreatment) showing selectivity for CO, formation, suggesting mostly basic sites on the

amorphous oxide surface.

(green) have about 10X more basic sites than commercial }-
ALO; (purple) under similar pretreatment conditions (Figure
4a). CO, TPD of AINCs and y-Al,O; pretreated at 300 °C
reveals strikingly different behavior in the strength of active site
basicity (Figure 4b). Desorption of CO, from 7-AL,O; showed a
broad maximum at ~150 °C. However, CO, desorption from
AINCs showed two distinct desorption peaks: a maximum at
~130 °C and a shoulder occurring at ~200 °C. AINCs and
commercial y-Al,O; pretreated at 500 °C show a similar trend
to the 300 °C case, although the higher temperature shoulder
present for AINCs has shifted to a maximum at ~330 °C
(Figure S6). Together, CO, chemisorption and CO, TPD
measurements reveal three compelling attributes of AINC
catalysts: their oxides have an order of magnitude more basic
sites than commercial y-Al,O; of equivalent surface area, some
of their basic sites are much stronger, and their strength can be
tuned as a function of pretreatment temperature.

To probe the acidic sites on AINCs and commercial y-Al,Oj,
a combination of pyridine adsorption IR spectroscopy and
ammonia TPD was employed. For both experiments, the
samples were pretreated at 300 °C in an identical fashion to the
CO, TPD experiments. After pretreatment, a background IR
spectrum was recorded before saturating the sample with
pyridine. Physisorbed pyridine and weakly bound pyridine were
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removed from the surface of both AINCs and commercial y-
Al,Oj; by flushing with helium and heating the surface to 216
°C (Figure 4c). Commercial y-Al,O5 showed a strong signal for
Lewis acid-bound (1445 and 1610 cm™") and hydrogen-bonded
(1440 and 1597 cm™) pyridine species.”” No IR signal was
observed for AINCs after the introduction of pyridine,
suggesting only few acidic sites on the AINC surface. Ammonia
TPD confirmed the contrasting availability of acid sites on both
types of oxide (Figure 4d).

These findings are further confirmed by the selectivity
observed in methanol TPD measurements, since the molecular
species that desorbs after methanol adsorption can indicate the
type of active site on a surface.*” Dimethyl ether (DME) was
the primary desorption product during methanol TPD
measurements of commercial y-ALO; (Figure 4e), confirming
the presence of its acidic sites” In contrast, methanol TPD
measurements of AINCs (Figure 4f) found selectivity favoring
conversion to CO,, a signature of basic surface sites, in addition
to a high quantity of desorbed methanol.*’

Combined with the observations from rotational spectros-
copy, these findings from IR spectroscopy and TPD measure-
ments confirm the proposed OCS catalytic decomposition
mechanism. HTC surface intermediates are created by the
adsorption of OCS at the many basic sites, likely surface
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hydroxyls, found in the amorphous AINC oxide. Photothermal
heating by resonant absorption of laser illumination at the
LSPR of the AINCs subsequently forms and desorbs CO or
CO, + H,S depending on the absence or presence of water,
respectively. The slow decomposition rate is a consequence of
active site poisoning by the remnant sulfur or adsorbed H,S.

Isotopic Analysis. With the OCS decomposition mecha-
nisms well understood, we conclude by considering a final
attribute of rotational spectroscopy: its ability to discriminate
isotopologues and ascertain reaction pathways using labeled
reactants or detecting anomalous deviations from natural
abundances. Monitoring isotopologues represents a unique
strength of THz rotational spectroscopy since isotopologues of
a single molecule are easily distinguishable by their distinct
spectral signatures. This can be particularly beneficial for
discriminating isotopologues of the same mass that are
otherwise challenging to distinguish using techniques such as
mass spectrometry or gas chromatography alone. For example,
rotational spectroscopy can easily distinguish isotopic isomers,
such as the methanol isomers CH;OD and CH,DOH, so that
the catalytic pathways may be mapped confidently with isotopic
tracers. This absolute recognition specificity and concentration
accuracy are not possible with mass spectroscopy or gas
chromatography, the widely used competing techniques.

By way of demonstration, the “dry” OCS decomposition
reaction was used to probe the formation of three
isotopologues of CO from a nonlabeled OCS precursor
whose own isotopologues are present in their natural
abundance (Figure Sa). A calculated pressure of 34.0 mTorr
of OCS was introduced into the reaction chamber followed by
pulsed, 404 nm wavelength illumination of the AINC catalyst
with ~5 W/cm? power density. Over 2 h, the reaction
proceeded in a similar manner to the reaction shown in Figure
3a, except that in addition to CO two additional isotopologues,
BCO and C'®0, were monitored simultaneously. At the end of
the reaction, the final calculated pressure of OCS was <0.01
mTorr, confirming complete decomposition of OCS. The final
calculated pressure of CO was 35.9 mTorr, higher than the
pressure of the OCS initially measured by the capacitance
manometer of 25.4 mTorr, because of the fast initial adsorption
of OCS on the AINC surface. The final pressure of *CO and
C'"®0 were calculated to be 1.3 and 0.2 mTorr, respectively,
which correspond to molecular concentrations of 69.9 and 19.4
pmol/ cm’.

Similarly, the four most common isotopologues of OCS
(15012C3%s, 16012C3S, 16013C32S, and POCS) were
monitored during the decomposition of a nominal pressure
of 30.7 mTorr of OCS (Figure Sb). The rate of decomposition
of each isotope was independent of isotopologue. A subsequent
measurement of the OCS isotopologues during decomposition
confirmed that isotopic abundances did not change during the
reaction; however, the reaction rate had slowed because
residual sulfur from the previous measurement had poisoned
the active sites. The absence of evidence for a kinetic isotope
effect for OCS decomposition reinforces the hypothesis of a
thermally driven mechanism on the AINC surface."
Furthermore, each isotopologue was investigated over nearly
a dozen transitions in our experimental apparatus (Figure S7).
Even two isotopologues of identical mass, '*OCS and OC*'S
(m/z = 62 u), were easily differentiated over multiple rotational
transitions with frequency-modulated rotational spectroscopy.
The ability to monitor low-abundance isotopically labeled
products starting with nonlabeled precursors is a unique
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Figure S. Isotopic analysis of reactant and product gas mixtures. (a)
Temporal decomposition of 25.4 mTorr OCS while monitoring three
CO isotopologues, CO, *CO, and C'®0, which are expected to be
96.5%, 1.07%, and 0.198% abundance, respectively. (b) Rates of
reactivity of four OCS isotopes (*SO'>C™S, 1°0'*C3S, *0'3C3*S, and
180'2C¥S). Throughout each reaction the catalyst was illuminated at
404 nm with a power density of ~5 W/cm? A decrease in OCS
decomposition rates from (a) to (b) is due to the formation of surface
sulfates and sulphites that occur during the “CO reaction” and poison
the active sites.

advantage and confirms the high sensitivity and selectivity
achievable with THz rotational spectroscopy.

B CONCLUSIONS

Terahertz rotational spectroscopy has been introduced as a new
tool for identifying and quantifying the composition of gas-
phase reactants and products during chemical reactions. By
studying the decomposition of OCS as a model reaction, we
have demonstrated how this technique may be used to monitor
plasmon-driven photocatalytic reactions in situ and to measure
molecular concentrations quantitatively over the course of the
reaction. Reactants and products and their isotopologues were
easily distinguished, and time-evolving concentrations were
accurately measured to concentrations below 1 nanomolar. The
amorphous oxide shell on colloidal AINCs has been revealed to
contain a high number of strongly basic sites compared to
commercial y-Al,O; under identical pretreatment conditions.
These basic sites are the active surface for plasmon-mediated
decomposition of OCS over AINCs; however, the reaction
pathway also strongly depends on the H,O content of the
system. When H,O is present, production of H,S is observed
and CO formation is suppressed, supporting an OCS hydrolysis
mechanism. When H,O is eliminated by high-temperature
pretreatment of the plasmonic catalyst, no H,S is evolved and
CO is the sole gas-phase product in stoichiometric yield,

DOI: 10.1021/acsphotonics.8b00342
ACS Photonics 2018, 5, 3097—3106


http://pubs.acs.org/doi/suppl/10.1021/acsphotonics.8b00342/suppl_file/ph8b00342_si_001.pdf
http://dx.doi.org/10.1021/acsphotonics.8b00342

ACS Photonics

suggesting a high-temperature OCS decomposition. In both
cases, photothermal heating based on the absorption of light by
AINC plasmon-resonant illumination, followed by plasmon
decay and photothermal heating, catalyzed OCS decomposi-
tion. These results demonstrate that rotational spectroscopy is a
powerful approach for monitoring and analyzing in situ gas-
phase chemical reactions in real time. This experimental system,
as described here, is a batch reactor best employed for
understanding reaction mechanisms, but this approach could
find even more uses as a monitor of flow-reactor systems or
through engineering systems coupled to other analytic
techniques such as mass spectrometry or gas chromatography.

B METHODS

Rotational Spectrometer. Rotational spectra were ob-
tained using a Virginia Diodes, Inc., amplifier-multiplier chain
source spanning the 210—360 GHz region. Only single
rotational transitions were probed at a given time, and the
transition probed for each isotopologue and molecular species
was kept constant throughout the study. Probe radiation from
the source horn antenna was collimated by an off-axis parabolic
mirror (OAPM) for a beam that filled the S cm diameter, 10 cm
long absorption cell, then concentrated by a second OAPM and
received by a horn antenna coupled to a zero-bias Schottky
diode detector. Following a matched low-noise transimpedance
amplifier and a 30 dB gain low-noise preamplifier, the signal
was band-pass filtered and amplified based on the f = 25 kHz
sawtooth modulation that was detected at 2f by a lock-in
amplifier with automated phase control, then read out by a
computer. Typically, spectral scans spanned ~5 MHz centered
on the rotational absorption line, and the modulated line
strength was captured every 10 kHz. Given the 10 ms time
constant of the lock-in amplifier and the 250 measurement
signals averaged for each frequency step, the ~500 frequency
steps required to acquire each spectrum took approximately 1
min. OCS was monitored at 231.061 GHz (J = 18—19
rotational transition) with a modulation depth w, = 0.54 MHz,
while CO was monitored at 230.538 GHz (J = 1-2) with w4 =
0.81 MHz for the decomposition experiment. *CO was
monitored at 330.330 GHz (J = 2—3) with wy = 1.01 MHz,
and C'®0 was monitored at 339.008 GHz (J = 2—3) with wq =
1.03 MHz. All modulation depths were selected to maximize
modulated line strength at a given frequency given the Doppler
line width of the individual transition. Details about how the
modulated spectra were fit to recover the integrated
unmodulated Voigt profile and calibrated partial pressure of
the gas are provided in the Supporting Information (SI).

Vacuum Chamber and Optical lllumination. The
vacuum chamber was composed of KF flange stainless steel
vacuum sections except for the CF flange five-way cross
reaction and absorption chamber containing the catalyst. A
Pfeiffer Hi-Cube compact turbo-molecular pump station
achieved base pressures of <107 Torr and a leak up rate of
3.3 mTorr/h caused by outgassing from the O-rings in the KF
flange connections. A lecture bottle of >97.5% purity OCS from
Sigma-Aldrich provided the reactant, which was controllably
introduced into the reaction chamber as measured by an MKS
Baratron capacitance manometer. Details about the AINC
catalysts and the custom stage that held, heated, and measured
them are provided in the SIL

The vertical arm of the cross is used for optical illumination
by a Coherent Chameleon Ultra II Ti:sapphire tunable laser
between 680 and 1080 nm with a pulse duration of 150 fs and a
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repetition rate of 80 MHz. A second-harmonic generator
(Angewandte Physik and Elektronik GmbH, output wavelength
350—530 nm) was used to tune the laser to the AINC plasmon
resonance frequency of ~400 nm. The source output of ~100
mW was focused to a 1 mm spot size, yielding a power density
of ~5 W/cm?. Neutral density filters were used to attenuate the
output power incident on the catalyst. A camera (Basler Ace) is
placed above the vertical chamber arm to monitor the position
of the laser spot. A motorized micrometer-controlled mirror
mount (T-MM?2, Zaber) is used to raster scan the beam over
the catalyst surface.

CO, Pulse Chemisorption Measurements. CO, pulse
chemisorption measurements were performed using a Micro-
meritics Autochem II 2920 gas analyzer. In a typical
experiment, approximately 200 mg of either the y-Al,O,
(Inframat Materials) or AINC samples was loaded into a U-
shaped sample tube and pretreated at 300—500 °C in flowing
He (50 sccm, 99.999%, Airgas) for 30 min, then cooled in
flowing He to 45 °C. Pulse chemisorption measurements were
then performed by pulsing calibrated amounts of 10% CO,/He
(Airgas) over each material until saturation and measuring the
effluent using a thermal conductivity detector. The number of
CO, molecules adsorbed on each material was then normalized
by the total BET surface area, measured by N, physisorption at
77 K using a Micromeritics ASAP 2020 surface area analyzer to
give molecules/nm? for each sample.

Temperature-Programmed Desorption Measure-
ments. CO, TPD experiments were performed immediately
after CO, pulse chemisorption measurements by ramping to
500 °C at a rate of 30 °C/min and holding for 30 min under
flowing He. NH; TPD measurements were performed by
pretreating each sample at 300 °C in flowing He, cooling to 120
°C, and saturating the sample with 15% NH,/He (Airgas) for
30 min. Following a 60 min flush with helium at 120 °C, the
TPD was then performed at 10 °C/min up to a temperature of
500 °C and holding for 60 min. Methanol (MeOH) TPD
experiments followed the same pretreatment procedure as NH,
TPD measurements, followed by cooling to 100 °C in flowing
He. Helium was then flowed through the vapor generator (held
at 35 °C) containing anhydrous methanol (99.8%, Sigma-
Aldrich) and over the samples at 100 °C for 30 min. Following
MeOH adsorption, each sample was flushed with He for 60
min at 100 °C. The temperature of 100 °C ensured a saturation
coverage of MeOH adsorption, while minimizing physically
adsorbed MeOH.* TPD measurements were then performed
by ramping to 500 °C at a rate of 10 °C/min while monitoring
the effluent stream with online mass spectrometry (HALO 201,
Hiden Analytical Inc.). The following m/z values were used to
detect each product: m/z = 28 for CO, m/z = 30 for H,CO, m/
z = 31 for MeOH, m/z = 44 for CO,, m/z = 45 for DME, and
m/z = 76 for dimethoxymethane (DMM). No CO, H,CO, or
DMM formation was observed during MeOH TPD experi-
ments. The time delay between the reactor and mass
spectrometer was corrected, and each m/z signal was quantified
using calibrations and normalized to the surface area of each
sample to give molecules/s-nm”.

Infrared Spectroscopy Measurements. Pyridine IR
experiments were performed in a high-temperature reaction
chamber (Harrick Scientific) equipped with ZnSe windows and
mounted inside a diffuse reflectance adapter (Harrick
Scientific) and coupled to a Thermo Scientific Nicolet iS10
FTIR spectrometer with a liquid-nitrogen-cooled HgCdTe
(MCT) detector. All measurements were made while purging
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the FTIR and diffuse reflection accessory with dry N,. Each
sample was loaded into the reaction chamber, followed by
pretreatment in flowing Ar (50 sccm, 99.999%, Airgas) at 300
°C for 30 min (note: 300 °C represents the sample surface
temperature, which was calibrated using an optical pyrometer).
Following pretreatment, the samples were cooled to 216 °C,
where a background IR spectrum was measured by averaging
128 scans at a resolution of 4 cm™". Pyridine adsorption was
accomplished by cooling the sample to ambient conditions,
flowing Ar through a pyridine bubbler/vapor generator at room
temperature until the sample was saturated (~5—10 min).
Physically adsorbed pyridine was then removed by flushing with
pure Ar and slowly ramping the temperature to 216 °C (~10
°C/min), giving the spectra observed in Figure 4c.
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