525 research outputs found

    Multidisciplinary Development of Autonomous Underwater Vehicle Fleet

    Get PDF
    Eco-Dolphin – Cooperative Fleet for Surveillance Mission SIAM, Society for Industrial & Applied Mathematics, members have been working for two years on the design, construction and testing of three highly integrated and streamlined autonomous underwater vehicles called Eco-Dolphins. This project is being developed at Embry-Riddle Aeronautical University’s Daytona Beach campus. The Leverage lab is used to create detailed mathematical models and conduct preliminary research for both electrical and mechanical systems. The campus Composites lab is used for the fabrication of structural and aesthetic components used by the high adaptable platform. The Autonomous Underwater Vehicle testing is conducted in the Universities Nonlinear Waves lab. The first phase of design, production and assembly of the yellow Eco-Dolphin prototype has been done in twelve months. The design includes an internal attitude control system, combined with internal propulsion from brushless direct current thrusters, thus allowing the vehicle to ascend and descend. The Eco-Dolphins promise is to be a unique, highly optimized and a competitive underwater vehicle fleet. The team has also successfully completed the second phase of the program, which involved tracking the Eco-Dolphins while submerged underwater. Work has been conducted to add a GPS system for surface tracking. Converting the acoustic system from tethered to wireless to make the ground station more robust. The Eco-Dolphin is configured with recently developed control system software that utilizes a relay combination of Wireless, Sonar and GPS radio wave communication. The current progress on the blue Eco-dolphin will be completed by the summer of 2014, for testing in littoral waters of central Florida. Through the addition of three sequential (yellow, blue, red) vehicles, therefore allows for better position and orientation data to be sent to the teams buoy network. The three vehicles, three buoy communication structure, multiply the data points collected for surveillance and underwater mapping purposes. This additional complexity improves the reliability and increases the application of the product through error elimination software. The team gives hands on research experience to SIAM members through applied mathematics. The outcome of the research goals, results in the application of many fields of study beyond mathematics. When combined the fleet can cooperatively fulfill multitask missions, advanced surveillance and environmental monitoring can be conducted. This opportunity opens the way for better balance between sustainable developments of the coastline

    Evaluation of Cellular-level Haversian Bone Resorption in Human Hyperparathyroid States: A Preliminary Report

    Get PDF
    Cellular-level bone resorption was evaluated in 16 patients undergoing renal dialysis and in two with primary hyperparathyroidism, by quantitative histological means using tissue time markers. When averaged over periods greater than two weeks, the individual osteoclasts in these patients resorbed less bone in unit time than normal

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Therapeutic Efficacy of Potent Neutralizing HIV-1-Specific Monoclonal Antibodies in SHIV-Infected Rhesus Monkeys

    Get PDF
    HIV-1-specific monoclonal antibodies (mAbs) with extraordinary potency and breadth have recently been described. In humanized mice, combinations of mAbs have been shown to suppress viremia, but the therapeutic potential of these mAbs has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific mAbs, as well as the single glycan-dependent mAb PGT121, resulted in a rapid and precipitous decline of plasma viremia to undetectable levels in rhesus monkeys chronically infected with the pathogenic virus SHIV-SF162P3. A single mAb infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa, and lymph nodes without the development of viral resistance. Moreover, following mAb administration, host Gag-specific T lymphocyte responses exhibited improved functionality. Virus rebounded in the majority of animals after a median of 56 days when serum mAb titers had declined to undetectable levels, although a subset of animals maintained long-term virologic control in the absence of further mAb infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific mAbs in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of mAb therapy for HIV-1 in humans

    Dwell-time distributions in quantum mechanics

    Full text link
    Some fundamental and formal aspects of the quantum dwell time are reviewed, examples for free motion and scattering off a potential barrier are provided, as well as extensions of the concept. We also examine the connection between the dwell time of a quantum particle in a region of space and flux-flux correlations at the boundaries, as well as operational approaches and approximations to measure the flux-flux correlation function and thus the second moment of the dwell time, which is shown to be characteristically quantum, and larger than the corresponding classical moment even for freely moving particles.Comment: To appear in "Time in Quantum Mechanics, Vol. 2", Springer 2009, ed. by J. G. Muga, A. Ruschhaupt and A. del Camp

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Theoretical Analysis of Competing Conformational Transitions in Superhelical DNA

    Get PDF
    We develop a statistical mechanical model to analyze the competitive behavior of transitions to multiple alternate conformations in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. Since DNA superhelicity topologically couples together the transition behaviors of all base pairs, a unified model is required to analyze all the transitions to which the DNA sequence is susceptible. Here we present a first model of this type. Our numerical approach generalizes the strategy of previously developed algorithms, which studied superhelical transitions to a single alternate conformation. We apply our multi-state model to study the competition between strand separation and B-Z transitions in superhelical DNA. We show this competition to be highly sensitive to temperature and to the imposed level of supercoiling. Comparison of our results with experimental data shows that, when the energetics appropriate to the experimental conditions are used, the competition between these two transitions is accurately captured by our algorithm. We analyze the superhelical competition between B-Z transitions and denaturation around the c-myc oncogene, where both transitions are known to occur when this gene is transcribing. We apply our model to explore the correlation between stress-induced transitions and transcriptional activity in various organisms. In higher eukaryotes we find a strong enhancement of Z-forming regions immediately 5′ to their transcription start sites (TSS), and a depletion of strand separating sites in a broad region around the TSS. The opposite patterns occur around transcript end locations. We also show that susceptibility to each type of transition is different in eukaryotes and prokaryotes. By analyzing a set of untranscribed pseudogenes we show that the Z-susceptibility just downstream of the TSS is not preserved, suggesting it may be under selection pressure

    Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy

    Get PDF
    It is unknown if adult human skeletal muscle has an epigenetic memory of earlier encounters with growth. We report, for the first time in humans, genome-wide DNA methylation (850,000 CpGs) and gene expression analysis after muscle hypertrophy (loading), return of muscle mass to baseline (unloading), followed by later hypertrophy (reloading). We discovered increased frequency of hypomethylation across the genome after reloading (18,816 CpGs) versus earlier loading (9,153 CpG sites). We also identified AXIN1, GRIK2, CAMK4, TRAF1 as hypomethylated genes with enhanced expression after loading that maintained their hypomethylated status even during unloading where muscle mass returned to control levels, indicating a memory of these genes methylation signatures following earlier hypertrophy. Further, UBR5, RPL35a, HEG1, PLA2G16, SETD3 displayed hypomethylation and enhanced gene expression following loading, and demonstrated the largest increases in hypomethylation, gene expression and muscle mass after later reloading, indicating an epigenetic memory in these genes. Finally, genes; GRIK2, TRAF1, BICC1, STAG1 were epigenetically sensitive to acute exercise demonstrating hypomethylation after a single bout of resistance exercise that was maintained 22 weeks later with the largest increase in gene expression and muscle mass after reloading. Overall, we identify an important epigenetic role for a number of largely unstudied genes in muscle hypertrophy/memory

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore