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Abstract

HIV-1-specific monoclonal antibodies (mAbs) with extraordinary potency and breadth have

recently been described. In humanized mice, combinations of mAbs have been shown to suppress

viremia, but the therapeutic potential of these mAbs has not yet been evaluated in primates with an

intact immune system. Here we show that administration of a cocktail of HIV-1-specific mAbs, as

well as the single glycan-dependent mAb PGT121, resulted in a rapid and precipitous decline of

plasma viremia to undetectable levels in rhesus monkeys chronically infected with the pathogenic

virus SHIV-SF162P3. A single mAb infusion afforded up to a 3.1 log decline of plasma viral

RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa, and
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lymph nodes without the development of viral resistance. Moreover, following mAb

administration, host Gag-specific T lymphocyte responses exhibited improved functionality. Virus

rebounded in the majority of animals after a median of 56 days when serum mAb titers had

declined to undetectable levels, although a subset of animals maintained long-term virologic

control in the absence of further mAb infusions. These data demonstrate a profound therapeutic

effect of potent neutralizing HIV-1-specific mAbs in SHIV-infected rhesus monkeys as well as an

impact on host immune responses. Our findings strongly encourage the investigation of mAb

therapy for HIV-1 in humans.

A series of broad and potent HIV-1 Env-specific mAbs have recently been isolated1,2 and

have been shown to target the CD4 binding site3–7, the V1/V2 loops8,9, the V3/V4 loops and

N332 glycans10–13, and the membrane proximal external region (MPER)14. Previous studies

in humanized mice and humans using the earlier generation of HIV-1 Env-specific mAbs

suggested that the therapeutic potential of mAbs would be severely limited by the rapid

emergence of viral escape mutations in the context of diverse virus swarms15–17. However,

cocktails of 3 or 5 of the new generation of more potent mAbs targeting multiple epitopes

have recently been shown to suppress HIV-1 replication in humanized mice18,19.

Therapeutic efficacy of mAb cocktails

To evaluate the therapeutic potential of broad and potent HIV-1-specific mAbs in primates

with an intact immune system, we infused cocktails of mAbs, as well as single mAbs, into

chronically SHIV-infected rhesus monkeys. We focused on the N332 glycan-dependent

mAb PGT12110 and the CD4 binding site-specific mAbs 3BNC1176 and b1220. In the first

study, we utilized 8 Indian origin adult rhesus monkeys (Macaca mulatta) that did not

express the class I alleles Mamu-A*01, Mamu-B*08, and Mamu-B*17 and that were infected

intrarectally with the pathogenic virus SHIV-SF162P3 for 9 months before the mAb

infusions. These animals exhibited chronic setpoint viral loads of 3.4–4.9 log RNA

copies/ml with clinical disease progression and reduced CD4+ T lymphocyte counts. We

performed two intravenous mAb infusions on day 0 and day 7 with 10 mg/kg of each of

PGT121, 3BNC117, and b12 (N=4); or with 30 mg/kg of the isotype matched control mAb

DEN3 (N=1) or saline (N=3).

Following the initial mAb infusion, we observed rapid and precipitous declines of plasma

viral loads to undetectable levels by day 7 in 4 of 4 monkeys (Fig. 1a). Virologic control

persisted for 84 to 98 days in animals 82-09, 98-09, and 161-09 (Fig. 1b). Following viral

rebound, sequence analysis18,21 showed no N332 or other characteristic escape mutations

(Supplementary Information), and rebound correlated with the decline of serum mAb titers

to undetectable levels <1 μg/ml (Extended Data Fig. 1). Monkey 82-09 exhibited transient

viremia on day 28 (Fig. 1b), which correlated with the decline of serum mAb titers to

undetectable levels (Extended Data Fig. 1), but this animal then spontaneously re-controlled

viral replication until day 98. Monkey 163-09, which had the lowest baseline viral load of

3.4 log RNA copies/ml prior to the mAb infusion, exhibited long-term virologic control for

over 200 days despite the absence of detectable serum mAb titers after day 70 (Fig. 1b).

Proviral DNA in PBMC also declined rapidly by 10-fold in the monkeys that received the

mAbs (Fig. 1e). Virologic control was not observed in the monkeys that received DEN3 or
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saline (Fig. 1c, d), and viral loads on day 14 were significantly lower in the mAb treated

monkeys than in the controls (P=0.02, Mann-Whitney test).

As expected, serum neutralizing antibody (NAb) ID50 titers22 to the SHIV-SF162P3

challenge virus increased dramatically following the mAb administration and then declined

over time (Extended Data Fig. 2). Following clearance of the mAbs, NAb titers to SHIV-

SF162P3 as well as to the related neutralization-sensitive virus SHIV-SF162P4 remained

slightly higher than baseline titers (Extended Data Fig. 2). The magnitude of Gag-specific

CD8+ and CD4+ T lymphocyte responses23,24 was not detectably modulated following mAb

administration (Extended Data Fig. 3), but by day 28, we observed 3- and 5-fold reductions,

respectively, in the percentage of Gag-specific CD8+ and CD4+ T lymphocytes that

expressed the exhaustion and activation markers PD-1 and Ki67 (Fig. 1g, h; P=0.02).

Moreover, CD8+ T lymphocytes from these animals exhibited increased functional capacity

to suppress virus replication following mAb administration25 (Fig. 1f; P=0.03). These data

suggest that mAb administration not only exerted direct antiviral effects but also improved

host immune responses.

We next investigated the therapeutic efficacy of a single infusion of the cocktail of three

mAbs as well as a combination of only two mAbs. 14 rhesus monkeys infected with SHIV-

SF162P3 for 9 months prior to the mAb infusion with chronic setpoint viral loads of 3.2–5.6

log RNA copies/ml received a single infusion on day 0 with 10 mg/kg of each of the mAbs

PGT121, 3BNC117, and b12 (N=5); PGT121 and 3BNC117 (N=5); or the isotype matched

control mAb DEN3 (N=4). We observed rapid virologic control to undetectable levels by

day 7 in 3 of 5 animals that received the cocktail of three mAbs and in 5 of 5 animals that

received only PGT121 and 3BNC117 (Fig. 2a, b). The 2 animals that failed to achieve

complete virologic suppression had the highest baseline plasma viral loads of 5.4 and 5.6 log

RNA copies/ml before the mAb infusion and exhibited 2.8 and 2.9 log declines,

respectively, in plasma viremia prior to rapid viral rebound on day 21 (monkeys 4907, 4909;

Fig. 2a). No characteristic viral escape mutations were detected following viral rebound

(Supplementary Information). The animals that suppressed viral loads to undetectable levels

exhibited up to a 3.1 log decline of plasma viral RNA copies/ml by day 7 (monkey 4912;

Fig. 2b). Viral rebound occurred in the majority of animals between day 28 and day 84 (Fig.

2a, b) and was associated with declines of serum mAb titers to undetectable levels

(Extended Data Fig. 4). The animal with the lowest baseline viral load of 3.2 log RNA

copies/ml exhibited long-term virologic control for over 100 days (monkey 4905; Fig. 2b),

and viral loads on day 14 were significantly lower in both groups of mAb treated monkeys

than in the controls (P=0.01). One control animal (monkey 5324; Fig. 2c) was euthanized for

progressive clinical AIDS and opportunistic infections during the course of this experiment.

PGT121 and 3BNC117 administration also resulted in 3- and 4-fold reductions in the

percentage of PD-1+Ki67+ Gag-specific CD8+ and CD4+ T lymphocytes, respectively (Fig.

2e, f).

To confirm that viral rebound was not associated with the development of viral resistance to

the mAbs, we performed a second infusion of mAbs on day 105 in the monkeys that

received PGT121 and 3BNC117. Viral re-suppression was observed in 4 of 4 animals

following the second mAb infusion (Fig. 2d; Supplementary Information). However,
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virologic control appeared less durable and serum mAb titers were lower following the

second mAb infusion as compared with the first mAb infusion (Fig. 2b, d; Extended Data

Fig. 4), presumably as a result of monkey anti-human antibody responses that developed

following the first mAb administration (Extended Data Fig. 5). Nevertheless, we assessed

the impact of the second mAb infusion on proviral DNA in various tissue compartments26,27

and observed a 2-fold decline in lymph nodes (P=0.1; Fig. 2g) and a 3-fold decline in

gastrointestinal mucosa (P=0.02; Fig. 2h) 14 days following mAb re-administration. These

data indicate that the potent mAbs not only suppressed viremia but also reduced proviral

DNA in tissues without the generation of viral resistance.

Therapeutic efficacy of single mAbs

Although the cloned SHIV-SF162P3 pseudovirus is highly sensitive to 3BNC117, we

observed that our particular SHIV-SF162P3 challenge stock was largely resistant to

3BNC117 (Extended Data Fig. 6), which raised the possibility that the observed therapeutic

efficacy in the previous experiment may have been due to PGT121 alone. We therefore

performed a single infusion of 10 mg/kg PGT121 alone (N=4), 3BNC117 alone (N=4), or

the control mAb DEN3 (N=4) in 12 rhesus monkeys infected with SHIV-SF162P3 for 9

months prior to the mAb infusion with chronic setpoint viral loads of 3.3–5.4 log RNA

copies/ml. PGT121 alone resulted in rapid virologic control to undetectable levels by day 7

in 4 of 4 animals, followed by viral rebound by day 42 to day 56 in 3 animals that again

correlated with declines in serum PGT121 titers to undetectable levels (Fig. 3a, c; Extended

Data Fig. 7; P=0.02 comparing viral loads on day 14 in PGT121 treated animals compared

with controls). One animal exhibited long-term virologic control (monkey DN1G; Fig. 3a).

PGT121 alone also reduced proviral DNA by 6-fold in peripheral blood (P=0.05; Fig. 3d), 4-

fold in lymph nodes (P=0.05; Fig. 3e), and 4-fold in gastrointestinal mucosa (P=0.1; Fig. 3f)

as compared with the DEN3 control on day 14. Moreover, PGT121 alone resulted in 3- and

5-fold reductions in the percentage of PD-1+Ki67+ Gag-specific CD8+ and CD4+ T

lymphocytes, respectively (Fig. 3g, h). In contrast, 3BNC117 alone, to which our SHIV-

SF162P3 stock was relatively resistant, resulted in only a transient 0.2–1.1 log reduction of

plasma viral loads (Fig. 3b), and one animal in this group (monkey CW9G) was euthanized

for progressive clinical AIDS during this experiment.

Kinetics of virologic control

The kinetics of the initial decline of plasma viremia following infusion of PGT121 or

PGT121-containing mAb cocktails was a median of 0.382 logs/day (IQR 0.338–0.540). In

contrast, the initial kinetics of decline of plasma viremia following raltegravir-containing

combination antiretroviral therapy in HIV-1-infected humans was a median of 0.264

logs/day (IQR 0.253–0.284)28 and following combination antiretroviral therapy in SIV-

infected monkeys was a median of 0.229 logs/day (IQR 0.198–0.265) (J.B.W., unpublished

data) (Extended Data Table 1). Although these reflect different models, the rapid control of

virus following mAb administration is striking and consistent with a mechanism that

involves direct elimination of free virus in plasma in addition to virus-infected cells in

tissues. The rapid reduction of proviral DNA in PBMC by day 1 (Fig. 1e) suggests direct
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antibody-mediated cytotoxic effects on infected cells29, although we cannot exclude the

possibility of an effect of CD4+ T cell trafficking.

Summary and implications

Our studies demonstrate the therapeutic efficacy of PGT121 and PGT121-containing mAb

cocktails in chronically SHIV-SF162P3 infected rhesus monkeys. The therapeutic efficacy

in the 18 animals that received PGT121 alone or as part of a cocktail (Fig. 4a) was

dependent on baseline viral loads before mAb administration. In the 17% of animals (3 of

18) with low baseline viral loads <3.5 log RNA copies/ml, long-term control of viral

replication was observed for the duration of the follow-up period (Fig. 4b), which included a

substantial period of time after serum mAb titers had declined to undetectable levels. These

observations suggest that PGT121 may have converted animals with low baseline viremia

into “elite controllers”, although additional follow-up is required to assess the durability of

this effect. These animals still have detectable, albeit reduced, proviral DNA in tissues (Fig.

2g, h; Fig. 3e, f), and thus virus has not been eradicated in these animals. In the 72% of

animals (13 of 18) with intermediate baseline viral loads 3.5–5.3 log RNA copies/ml,

plasma viremia was rapidly reduced to undetectable levels within 7 days but then rebounded

in a median of 56 days when serum mAb titers declined to undetectable levels <1 μg/ml

(Fig. 4c). In the 11% of animals (2 of 18) with high baseline viral loads >5.3 log RNA

copies/ml, incomplete control of plasma viremia and rapid viral rebound was observed,

suggesting a therapeutic ceiling in this model (Fig. 4d). Taken together, baseline viral loads

strongly correlated with the time to viral rebound (P=0.0002, Spearman rank-correlation

test; Fig. 4e).

We speculate that the therapeutic impact of these mAbs reflected not only their direct

antiviral activity but also their impact on host antiviral immune responses. Following mAb

infusion, we observed modest increases in host virus-specific NAb activity (Extended Data

Fig. 2) as well as reduced activation and improved functionality of host virus-specific T

lymphocyte responses (Fig. 1f–h; Fig. 2e, f; Fig. 3g, h). Consistent with this model, median

log setpoint viral loads following viral rebound were 0.61 log lower than median setpoint

viral loads at baseline prior to mAb infusion (P=0.0005, Wilcoxon matched pairs signed-

rank test; Fig. 4f), with no evidence of reduced viral replicative capacity30 (Extended Data

Fig. 8). Moreover, 3 of 18 monkeys exhibited persistent virologic control to undetectable

levels (Fig. 4b). Defining the precise immunologic mechanisms of improved virologic

control following monoclonal and polyclonal antibody administration31,32 warrants further

investigation.

Previous studies in humanized mice and humans showed that the earlier generation of

neutralizing HIV-1-specific mAbs was unable to control viremia15–17. More recent studies

in humanized mice have shown that combinations of 3 or 5 of the new generation of more

potent mAbs suppressed HIV-1 replication, although single mAbs still rapidly selected for

resistance18,19. In contrast to these prior studies, we observed that a single infusion of

PGT121 in rhesus monkeys resulted in rapid virologic control in both peripheral blood and

tissues. It is possible that intrinsic differences between HIV-1 replication in mice and SHIV

replication in monkeys may account for these differences. Another key difference is the

Barouch et al. Page 5

Nature. Author manuscript; available in PMC 2014 May 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



functional immune system in rhesus monkeys as compared with immunosuppressed

humanized mice, and the profound virologic suppression without the development of

resistance in the present study may reflect functional host antibody effector activity and

intact antiviral cellular immune responses in rhesus monkeys. A caveat is that we were

unable to quantitate the intrinsic ability of SHIV-SF162P3 to escape from PGT121 in vivo,

although prior studies have documented the ability of SHIV-SF162P3 and SHIV-SF162P4

to escape from autologous antibody responses in other settings33,34. Moreover, N332A-

mutated SHIV-SF162P3 exhibited only partial escape from PGT121 in vitro but complete

escape from other N332-dependent mAbs PGT124 and PGT128, suggesting a high bar to

resistance (Extended Data Fig. 9).

Conclusions

Our data demonstrate profound therapeutic efficacy of broad and potent HIV-1-specific

mAbs in rhesus monkeys chronically infected with SHIV-SF162P3. Our SHIV-SF162P3

stock is highly pathogenic, as evidenced by moderate to high chronic setpoint viral loads and

AIDS-related deaths in two animals during the course of these experiments (Figs. 2c, 3b).

Moreover, in a separate study35, our SHIV-SF162P3 stock led to AIDS-related mortality in

5 of 12 (42%) rhesus monkeys by 1 year following infection, which is comparable to the

reported pathogenicity of SIVmac25136,37 and SHIV-AD838,39. Nevertheless, given the

differences between SHIV-infected rhesus monkeys and HIV-1-infected humans, clinical

trials are required to establish the therapeutic efficacy of potent neutralizing HIV-1-specific

mAbs in humans. Although multiple mAbs targeting different epitopes will likely prove

superior, our data suggest that mAb monotherapy with the new generation of potent and

broad mAbs also warrants clinical evaluation. Moreover, the ability of these mAbs to reduce

proviral DNA in tissues suggests that these mAbs should also be evaluated in the context of

viral eradication strategies.

Methods

Animals and study design

34 Indian-origin, outbred, young adult, male and female, specific pathogen-free (SPF)

rhesus monkeys (Macaca mulatta) that did not express the class I alleles Mamu-A*01,

Mamu-B*08, and Mamu-B*17 associated with spontaneous virologic control were housed at

New England Primate Research Center, Bioqual, or Alphagenesis. Groups were balanced for

susceptible and resistant TRIM5α alleles. Groups of 4–5 monkeys were powered to detect

large differences in viral loads, and animals were randomly allocated to balance baseline

viral loads. Animals were infected by the intrarectal route with our rhesus-derived SHIV-

SF162P3 challenge stock for 9 months prior to mAb administration were utilized for the

studies. PGT121, b12, and DEN3 mAbs were generated as previously described10 and were

expressed in Chinese hamster ovary (CHO-K1) cells and purified by Protein A affinity

chromatography. 3BNC117 was manufactured by Celldex Therapeutics in CHO cells and

purified by chromatography and sterile filtration. All the mAb preparations were endotoxin

free. Cocktails of mAbs or single mAbs were administered to monkeys once or twice by the

intravenous route at a dose of 10 mg/kg for each mAb. Monkeys were bled up to three times
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per week for viral loads. Immunologic and virologic data were generated blinded. All animal

studies were approved by the appropriate Institutional Animal Care and Use Committee

(IACUC).

Cellular immune assays

SIV Gag-specific cellular immune responses were assessed by multiparameter intracellular

cytokine staining (ICS) assays essentially as described23,24. 12-color ICS assays were

performed with the Aqua green-fluorescent reactive dye (Invitrogen, L23101) and

predetermined titers of mAbs (Becton-Dickinson) against CD3 (SP34; Alexa Fluor 700),

CD4 (OKT4; BV711, Biolegend), CD8 (SK1; allophycocyanin-cyanine 7 [APC-Cy7]),

CD28 (L293; BV610), CD95 (DX2; allophycocyanin [APC]), CD69 (TP1.55.3;

phycoerythrin-Texas red [energy-coupled dye; ECD]; Beckman Coulter), gamma interferon

(IFN-γ) (B27; phycoerythrin-cyanine 7 [PE-Cy7]), Ki67 (B56; fluorescein isothiocyanate

[FITC]), CCR5 (3A9; phycoerythrin [PE]), CCR7(3D12; Pacific Blue), and PD-1(EH21.1;

peridinin chlorophyll-A-cyanine 5.5 [PerCP-Cy5.5]). IFN-γ backgrounds were consistently

<0.01% in PBMC and LNMC and <0.05% in colorectal biopsy specimens. Virus

suppression assays (VSA) were performed by co-culturing purified CD8+ T lymphocytes

with CD8-depleted PBMC and monitoring p27 levels for 7–14 days essentially as

described25.

Neutralizing antibody assays

HIV-1-specific neutralizing antibody (NAb) responses against primary infectious stocks of

SHIV-SF162P3 and SHIV-SF162P4 were assessed by TZM-bl luciferase-based

neutralization assays22. PGT121 titers were determined by X2088_c9 and ZM247v1(Rev-)

pseudovirus neutralization, 3BNC117 titers were determined by 6041.v3.c23 and Q461.ez

pseudovirus neutralization, and b12 titers were determined by Du422.1.N332A pseudovirus

neutralization and B2.1 ELISA.

Proviral DNA assay

Proviral DNA was quantitated as previously reported26. Lymph node and gastrointestinal

mucosal biopsies were processed as single cell suspensions essentially as previously

described27. Tissue-specific total cellular DNA was isolated from 5×106 cells using a

QIAamp DNA Blood Mini kit (Qiagen). The absolute quantification of viral DNA in each

sample was determined by qPCR using primers specific to a conserved region SIVmac239.

All samples were directly compared to a linear virus standard and the simultaneous

amplification of a fragment of human GAPDH gene. The sensitivity of linear standards was

compared against the 3D8 cell line as a reference standard as described26. All PCR assays

were performed with 100 and 200 ng of sample DNA.

Virus sequencing

Virus sequencing of breakthrough virus was performed essentially as described18. Plasma

samples of 1 ml were centrifuged for 30 min at 20,000 × g and the lowest fraction was

subjected to RNA purification (QiaAmp MinElute Virus Spin kit; Qiagen). Random

hexamers (Roche) or SHIV-SF162P3-specific (5′-AAGAGCTCCTCCAGACAGTGAG-3′
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or 5′-TAGAGCCCTGGAAGCATCCAGGAAGTCAGCCTA-3′) primers were used for

cDNA synthesis with SuperScript™ III Reverse Transcriptase (Invitrogen). SHIV envelope

sequences were amplified by a double–nested PCR approach using the Expand High Fidelity

PCR System (Roche). First round primers for gp120 were 5′-

AAGAGCTCCTCCAGACAGTGAG-3′ and 5′-ATGAGTTTTCCAGAGCAACCC-3′ and

for gp160 were 5′-AAGAGCTCCTCCAGACAGTGAG-3′ and 5′-

CAAGCCCTTGTCTAATCCTCC-3′. Second round primers for gp120 were 5′-

GAAAGAGCAGAAGACAGTGGC-3′ and 5′-ATTGTCTGGCCTGTACCGTC-3′ and

for gp160 were 5′-GAAAGAGCAGAAGACAGTGGC-3′ and 5′-

ATGGAAATAGCTCCACCCATC-3′. Following second round PCR, all products were

spiked with 0.5 μl Taq polymerase and incubated for 15 min at 72°C. Amplicons were

excised from a gel and purified following cloning into the pCR™4-TOPO vector

(Invitrogen) and expansion in One Shot® TOP10 cells at 30°C. Single colonies were

sequenced using M13F/M13R primers as well as primers annealing to the envelope

sequence. A consensus sequence of each clone was derived using Geneious Pro software

(Biomatters), and sequence analysis was performed using Geneious Pro and antibody

database software21.

Statistical analyses

Analyses of independent virologic and immunologic data were performed by two-tailed

Mann-Whitney tests. Analyses of paired data sets were performed by two-tailed Wilcoxon

matched pairs signed-rank tests. Correlations were evaluated by Spearman rank-correlation

tests. P values less than 0.05 were considered significant. Statistical analyses were

performed using GraphPad Prism. Exponential decay rates of plasma viral loads were

calculated using standard ordinary least squares regression on log10 (viral load)

measurements vs. time (days).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Therapeutic efficacy of the triple PGT121/3BNC117/b12 mAb cocktail
Plasma viral RNA (log copies/ml) in rhesus monkeys chronically infected with SHIV-

SF162P3 following infusions of PGT121, 3BCN117, and b12 on day 0 and day 7 (arrows)

for 14 days (a) and 224 days (b). Plasma viral RNA in rhesus monkeys chronically infected

with SHIV-SF162P3 following infusions with the control mAb DEN3 (87-09) or saline on

day 0 and day 7 (arrows) for 14 days (c) and 224 days (d). e, Proviral DNA (copies/106

PBMC) in the monkeys that received the therapeutic mAb cocktail or controls (inset). f, Log

inhibition of viral replication in CD8+ T lymphocyte virus suppression assays following

mAb infusion. One animal had no recoverable virus at week 2. PD-1+Ki67+ expression on

Gag-specific CD8+ (g) and CD4+ (h) T lymphocytes following mAb infusion.
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Figure 2. Therapeutic efficacy of the double PGT121/3BNC117 mAb cocktail
Plasma viral RNA (log copies/ml) in rhesus monkeys chronically infected with SHIV-

SF162P3 following a single infusion (arrows) of PGT121, 3BCN117, and b12 (a); PGT121

and 3BNC117 (b); or the control mAb DEN3 (c). d, Plasma viral RNA in monkeys that

received PGT121 and 3BNC117 following a second infusion on day 105. PD-1+Ki67+

expression on Gag-specific CD8+ (e) and CD4+ (f) T lymphocytes in the monkeys that

received PGT121 and 3BNC117. Proviral DNA (copies/106 cells) in lymph nodes (g) and

gastrointestinal mucosa (h) before (day 105) and 14 days after (day 119) the second mAb

infusion with PGT121 and 3BNC117 in the four animals with detectable viremia.
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Figure 3. Therapeutic efficacy of the single mAbs PGT121 and 3BNC117
Plasma viral RNA (log copies/ml) in rhesus monkeys chronically infected with SHIV-

SF162P3 following a single infusion (arrows) of PGT121 (a), 3BNC117 (b), or the control

mAb DEN3 (c). Proviral DNA (copies/106 cells) in PBMC (d), lymph nodes (e), and

gastrointestinal mucosa (f) 14 days following the mAb infusion in the animals that received

PGT121 or DEN3. Red bars indicate means. Assays for one of the DEN3 treated controls

failed. PD-1+Ki67+ expression on Gag-specific CD8+ (g) and CD4+ (h) T lymphocytes in

the monkeys that received PGT121.
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Figure 4. Therapeutic efficacy of PGT121 or PGT121-containing mAb cocktails in chronically
SHIV-infected rhesus monkeys
a, Summary of the therapeutic effect of PGT121 alone or PGT121-containing mAb cocktails

in the 18 rhesus monkeys chronically infected with SHIV-SF162P3, as well as in the

subgroups of animals with baseline viral loads of <3.5 log RNA copies/ml (N=3) (b), 3.5–

5.3 log RNA copies/ml (N=13) (c), and >5.3 log RNA copies/ml (N=2) (d). Red lines

indicates median log viral loads. e, Correlation of baseline viral loads with times to viral

rebound. P value reflects two-sided Spearman rank-correlation test. f, Comparison of

setpoint viral loads at baseline before mAb administration and following viral rebound. P

value reflects two-sided Wilcoxon matched pairs signed-rank test. Red line indicates median

log viral loads.
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Extended Data Figure 1. Monoclonal Ab titers following administration of the triple
PGT121/3BNC117/b12 mAb cocktail
PGT121, 3BNC117, and b12 titers in the monkeys described in Fig. 1 following infusion of

the triple mAb cocktail (arrows).
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Extended Data Figure 2. Neutralizing Ab titers following administration of the triple
PGT121/3BNC117/b12 mAb cocktail
SHIV-SF162P3 and SHIV-SF162P4 serum NAb ID50 titers in the monkeys described in

Fig. 1 following infusion of the triple mAb cocktail (left) or saline or DEN3 (right).
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Extended Data Figure 3. Gag-specific T lymphocyte responses following administration of the
triple PGT121/3BNC117/b12 mAb cocktail
Gag-specific IFN-γ+ CD8+ (left) and CD4+ (right) T lymphocyte responses in the monkeys

described in Fig. 1 following infusion of the triple mAb cocktail.
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Extended Data Figure 4. Monoclonal Ab titers following administration of the double
PGT121/3BNC117 mAb cocktail
PGT121, 3BNC117, and b12 titers in the monkeys described in Fig. 2 that received

PGT121, 3BCN117, and b12 (a); PGT121 and 3BNC117 (b); or the second infusion of

PGT121 and 3BNC117 (c).
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Extended Data Figure 5. Monkey anti-human antibody titers following mAb administration
ELISAs assessing anti-b12, anti-PGT121, anti-3BNC117, and anti-DEN3 antibodies at week

6 and week 10 following mAb infusion in the monkeys described in Fig. 2.
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Extended Data Figure 6. Neutralization sensitivity of SHIV-SF162P3 pseudovirus and our
SHIV-SF162P3 challenge stock
TZM-bl neutralization assays of PGT121, 3BNC117, and b12 against the SHIV-SF162P3

pseudovirus (top) and against the SHIV-SF162P3 challenge stock (middle, bottom). Note

sensitivity of our SHIV-SF162P3 challenge stock to PGT121 but relative resistance to

3BNC117.
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Extended Data Figure 7. Monoclonal Ab titers following administration of the single mAbs
PGT121 and 3BNC117
PGT121 and 3BNC117 titers in the monkeys described in Fig. 3 following infusion of the

single mAbs.
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Extended Data Figure 8. Virus replicative capacity and following virus rebound
Numbers of GFP positive infected GHOST indicator cells per well after 3 and 6 days of

culture with baseline or rebound SHIV-SF162P3 virus.
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Extended Data Figure 9. Monoconal antibody sensitivity to N332A mutated SHIV-SF162P3
TZM-bl neutralization assays of PGT121, PGT124, PGT128, PGT130, and PGV04 against

SHIV-SF162P3 containing the N332A mutation. Note 100-fold reduced sensitivity to

PGT121 but more profound escape from PGT124 and PGT128.
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Extended Data Table 1

Viral decay kinetics.Kinetics of decline of plasma viremia following antiretroviral therapy in rhesus monkeys

and humans and following mAb administration in rhesus monkeys.

Therapy r (logs/day)† Median (IQR) Median t1/2 (days)# Fold decrease in viral load over a 7-day period

DTG + TNF/FTC (SIV/monkeys) 0.229 (0.198–0.265)* 1.31 40

EFV + 2 NRTI (HIV/humans) 0.294 (0.273–0.334) 1.02 112

RAL + TDF/FTC (HIV/humans) 0.264 (0.253–0.284) 1.15 70

PGT121 mAb (SHIV/monkeys) 0.382 (0.338–0.540) 0.78 468

†
In case of EFV and RAL therapies, decline rates r correspond to the “first phase” of viral decline. Values reported in ref. 23 have been converted

to logs/day (base 10). Note that the specific rate of decline due to RAL is slower than that due to EFV. The rapid viral decline in RAL compared to
EFV is due to a longer duration in the first phase and a slower transition into the second phase, where viral decline rates are lower.

#
The half-life, t1/2 = ln(2)/r*ln(10).

*
Computed using viral load measurements at day 0 and day 12 (J. B. W., unpublished).
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