1,159 research outputs found
Recommended from our members
High pressure, quasi-isentropic compression experiments on the Omega laser
The high energy density of pulsed lasers can be used to generate shockless loading in solids to high pressures and compressions but low temperatures. We have used the Omega laser to extend the capabilities of this technique to multi-Mbar pressures and compressions approaching a factor of 2 in aluminum foils. The energy from a 3.7 ns laser pulse is used to drive a strong shock through a 200 {micro}m polystyrene disc. The disc material unloads from a high-pressure state and expands across a 300 {micro}m vacuum gap where it stagnates against the sample to produce a smooth, monotonically increasing load with rise times from a few to {approx} 20 ns. Ramped compression reasing waves having peak pressures of 14-200 GPa (0.14-2.0 Mbar) and peak compressions {rho}/{rho}{sub 0} of 1.1-2.0 were generated in the aluminum samples using laser pulse energies of 400 J to 2 kJ. Wave profiles from a series of successively thicker targets loaded to 120 GPa show the evolution of the high-pressure compression wave within the sample. The initial loading in the sample is shockless, and develops into a shock at a depth of 20-25 {micro}m. We compare these wave profiles with hydrodynamic simulations from which we extract material temperatures and plastic strain rates behind the compression wave. Limitations and future prospects for this new shockless loading technique are discussed
Evolution of the geomagnetic daily variation at Tatuoca, Brazil, from 1957 to 2019: a transition from Sq to EEJ
The magnetic equator in the Brazilian region has moved over 1,100 km northward since 1957, passing the geomagnetic observatory Tatuoca (TTB), in northern Brazil, around 2013. We recovered and processed TTB hourly mean values of the geomagnetic field horizontal (H) component from 1957 until 2019, allowing the investigation of long‐term changes in the daily variation due to the influence of secular variation, solar activity, season, and lunar phase. The H day‐to‐day variability and the occurrence of the counter electrojet at TTB were also investigated. Until the 1990s, ionospheric solar quiet currents dominated the quiet‐time daily variation at TTB. After 2000, the magnitude of the daily variation became appreciably greater due to the equatorial electrojet (EEJ) contribution. The H seasonal and day‐to‐day variability increased as the magnetic equator approached, but their amplitudes normalized to the average daily variation remained at similar levels. Meanwhile, the amplitude of the lunar variation, normalized in the same way, increased from 5% to 12%. Within the EEJ region, the occurrence rate of the morning counter electrojet (MCEJ) increased with proximity to the magnetic equator, while the afternoon counter electrojet (ACEJ) did not. EEJ currents derived from CHAMP and Swarm satellite data revealed that the MCEJ rate varies with magnetic latitude within the EEJ region while the ACEJ rate is largely constant. Simulations with the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model based on different geomagnetic main field configurations suggest that long‐term changes in the geomagnetic daily variation at TTB can be attributed to the main field secular variation
Social Interactions vs Revisions, What is important for Promotion in Wikipedia?
In epistemic community, people are said to be selected on their knowledge
contribution to the project (articles, codes, etc.) However, the socialization
process is an important factor for inclusion, sustainability as a contributor,
and promotion. Finally, what does matter to be promoted? being a good
contributor? being a good animator? knowing the boss? We explore this question
looking at the process of election for administrator in the English Wikipedia
community. We modeled the candidates according to their revisions and/or social
attributes. These attributes are used to construct a predictive model of
promotion success, based on the candidates's past behavior, computed thanks to
a random forest algorithm.
Our model combining knowledge contribution variables and social networking
variables successfully explain 78% of the results which is better than the
former models. It also helps to refine the criterion for election. If the
number of knowledge contributions is the most important element, social
interactions come close second to explain the election. But being connected
with the future peers (the admins) can make the difference between success and
failure, making this epistemic community a very social community too
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles
Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Head Mounted Display Interaction Evaluation: Manipulating Virtual Objects in Augmented Reality
Augmented Reality (AR) is getting close to real use cases,which is driving the creation of innovative applications and the unprecedented growth of Head-Mounted Display (HMD) devices in consumer availability. However, at present there is a lack of guidelines, common form factors and standard interaction paradigms between devices, which has resulted in each HMD manufacturer creating their own specifications. This paper presents the first experimental evaluation of two AR HMDs evaluating their interaction paradigms, namely we used the HoloLens v1 (metaphoric interaction) and Meta2 (isomorphic interaction). We report on precision, interactivity and usability metrics in an object manipulation task-based user study. 20 participants took part in this study and significant differences were found between interaction paradigms of the devices for move tasks, where the isomorphic mapped interaction outperformed the metaphoric mapped interaction in both time to completion and accuracy, while the contrary was found for the resize task. From an interaction perspective, the isomorphic mapped interaction (using the Meta2) was perceived as more natural and usable with a significantly higher usability score and a significantly lower task-load index. However, when task accuracy and time to completion is key mixed interaction paradigms need to be considered
TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider
The TESLA Technical Design Report Part III: Physics at an e+e- Linear
ColliderComment: 192 pages, 131 figures. Some figures have reduced quality. Full
quality figures can be obtained from http://tesla.desy.de/tdr. Editors -
R.-D. Heuer, D.J. Miller, F. Richard, P.M. Zerwa
- …