10 research outputs found

    Wear Performance of Calcium Carbonate-Containing Knee Spacers

    No full text
    Articulating spacers should be wear-resistant and load-bearing to avoid prolonged immobilization of the patient and to reduce morbidity. However, due to the articulation of both components, a release of cement wear particles is to be expected. The aim of this study was to investigate the wear performance of a new spacer cement that contains calcium carbonate as a radio-opaque substance, in comparison to an established barium sulphate-containing spacer material, and also to characterize the amount, morphology, and size distributions of the released cement particles in detail. Force-controlled simulation was carried out on an AMTI knee simulator. The test parameters were in accordance with the standard ISO 14243-1 with a 50% reduced axial force. Tests were run for 500,000 cycles at a frequency of 1 Hz. For wear analysis, photographic documentation of the wear scars, gravimetric wear measurements and wear particle analysis were performed. The barium sulphate spacer material showed a total articular wear of 375.53 ± 161.22 mg. For the calcium carbonate-containing cement, reduced articular wear of 136.32 ± 37.58 mg was determined. Isolated cement wear particles of the barium sulphate-containing cement had a diameter of 0.429 ± 0.224 μm and were significantly larger compared to the calcium carbonate-containing cement (0.380 ± 0.216 μm, p = 0.02). The calcium carbonate-containing cement showed better wear performance in terms of gravimetric wear and particle release. Thus, calcium carbonate seems to be a promising material as a radio-opaque substrate in cement spacers

    Neural dynamics underlying a long-term associative memory

    Full text link
    The brain’s ability to associate different stimuli is vital for long-term memory, but how neural ensembles encode associative memories is unknown. Here we studied how cell ensembles in the basal and lateral amygdala encode associations between conditioned and unconditioned stimuli (CS and US, respectively). Using a miniature fluorescence microscope, we tracked the Ca2+ dynamics of ensembles of amygdalar neurons during fear learning and extinction over 6 days in behaving mice. Fear conditioning induced both up- and down-regulation of individual cells’ CS-evoked responses. This bi-directional plasticity mainly occurred after conditioning, and reshaped the neural ensemble representation of the CS to become more similar to the US representation. During extinction training with repetitive CS presentations, the CS representation became more distinctive without reverting to its original form. Throughout the experiments, the strength of the ensemble-encoded CS–US association predicted the level of behavioural conditioning in each mouse. These findings support a supervised learning model in which activation of the US representation guides the transformation of the CS representation

    Cortical encoding of pitch: Recent results and open questions

    No full text
    It is widely appreciated that the key predictor of the pitch of a sound is its periodicity. Neural structures which support pitch perception must therefore be able to reflect the repetition rate of a sound, but this alone is not sufficient. Since pitch is a psychoacoustic property, a putative cortical code for pitch must also be able to account for the relationship between the amount to which a sound is periodic (i.e. its temporal regularity) and the perceived pitch salience, as well as limits in our ability to detect pitch changes or to discriminate rising from falling pitch. Pitch codes must also be robust in the presence of nuisance variables such as loudness or timbre. Here, we review a large body of work on the cortical basis of pitch perception, which illustrates that the distribution of cortical processes that give rise to pitch perception is likely to depend on both the acoustical features and functional relevance of a sound. While previous studies have greatly advanced our understanding, we highlight several open questions regarding the neural basis of pitch perception. These questions can begin to be addressed through a cooperation of investigative efforts across species and experimental techniques, and, critically, by examining the responses of single neurons in behaving animals
    corecore