440 research outputs found

    Reversible cooling-induced deactivations to study cortical contributions to obstacle memory in the walking cat

    Get PDF
    On complex, naturalistic terrain, sensory information about an environmental obstacle can be used to rapidly adjust locomotor movements for avoidance. For example, in the cat, visual information about an impending obstacle can modulate stepping for avoidance. Locomotor adaptation can also occur independent of vision, as sudden tactile inputs to the leg by an expected obstacle can modify the stepping of all four legs for avoidance. Such complex locomotor coordination involves supraspinal structures, such as the parietal cortex. This protocol describes the use of reversible, cooling-induced cortical deactivation to assess parietal cortex contributions to memory-guided obstacle locomotion in the cat. Small cooling loops, known as cryoloops, are specially shaped to deactivate discrete regions of interest to assess their contributions to an overt behavior. Such methods have been used to elucidate the role of parietal area 5 in memory-guided obstacle avoidance in the cat

    Deaf white cats

    Get PDF
    A Quick guide on deaf white cats: domestic cats that are completely white with blue eyes that have no functional hearing, proving a natural model for human congenital deafness

    Stable Delay Period Representations in the Posterior Parietal Cortex Facilitate Working-Memory-Guided Obstacle Negotiation

    Get PDF
    In complex environments, information about surrounding obstacles is stored in working memory (WM) and used to coordinate appropriate movements for avoidance. In quadrupeds, this WM system is particularly important for guiding hindleg stepping, as an animal can no longer see the obstacle underneath the body following foreleg clearance. Such obstacle WM involves the posterior parietal cortex (PPC), as deactivation of area 5 incurs WM deficits, precluding successful avoidance. However, the neural underpinnings of this involvement remain undefined. To reveal the neural substrates of this behavior, microelectrode arrays were implanted to record neuronal activity in area 5 during an obstacle WM task in cats. Early in the WM delay, neurons were modulated generally by obstacle presence or more specifically in relation to foreleg step height. Thus, information about the obstacle or about foreleg clearance can be retained in WM. In a separate set of neurons, this information was recalled later in the delay in order to plan subsequent hindleg stepping. Such early and late delay period signals were temporally bridged by neurons exhibiting obstacle-modulated activity sustained throughout the delay. These neurons represented a specialized subset of all recorded neurons, which maintained stable information coding across the WM delay. Ultimately, these various patterns of task-related modulation enable stable representations of obstacle-related information within the PPC to support successful WM-guided obstacle negotiation in the cat

    Deaf white cats

    Get PDF
    A Quick guide on deaf white cats: domestic cats that are completely white with blue eyes that have no functional hearing, proving a natural model for human congenital deafness

    Species-dependent role of crossmodal connectivity among the primary sensory cortices

    Get PDF
    When a major sense is lost, crossmodal plasticity substitutes functional processing from the remaining, intact senses. Recent studies of deafness-induced crossmodal plasticity in different subregions of auditory cortex indicate that the phenomenon is largely based on the “unmasking” of existing inputs. However, there is not yet a consensus on the sources or effects of crossmodal inputs to primary sensory cortical areas. In the present review, a rigorous re-examination of the experimental literature indicates that connections between different primary sensory cortices consistently occur in rodents, while primary-to-primary projections are absent/inconsistent in non-rodents such as cats and monkeys. These observations suggest that crossmodal plasticity that involves primary sensory areas are likely to exhibit species-specific distinctions

    Contributions of parietal cortex to the working memory of an obstacle acquired visually or tactilely in the locomoting cat

    Get PDF
    A working memory of obstacles is essential for navigating complex, cluttered terrain. In quadrupeds, it has been proposed that parietal cortical areas related to movement planning and working memory may be important for guiding the hindlegs over an obstacle previously cleared by the forelegs. To test this hypothesis, parietal areas 5 and 7 were reversibly deactivated in walking cats. The working memory of an obstacle was assessed in both a visually dependent and tactilely dependent paradigm. Reversible bilateral deactivation of area 5, but not area 7, altered hindleg stepping in a manner indicating that the animals did not recall the obstacle over which their forelegs had stepped. Similar deficits were observed when area 5 deactivation was restricted to the delay during which obstacle memory must be maintained. Furthermore, partial memory recovery observed when area 5 function was deactivated and restored within this maintenance period suggests that the deactivation may suppress, but not eliminate, the working memory of an obstacle. As area 5 deactivations incurred similar memory deficits in both visual and tactile obstacle working memory paradigms, parietal area 5 is critical for maintaining the working memory of an obstacle acquired via vision or touch that is used to modify stepping for avoidance

    Specificity of Neuronal Responses in Primary Visual Cortex Is Modulated by Interhemispheric CorticoCortical Input

    Get PDF
    Within the visual cortex, it has been proposed that interhemispheric interactions serve to re-establish the continuity of the visual field across its vertical meridian (VM) by mechanisms similar to those used by intrinsic connections within a hemisphere. However, other specific functions of transcallosal projections have also been proposed, including contributing to disparity tuning and depth perception. Here, we consider whether interhemispheric connections modulate specific response properties, orientation and direction selectivity, of neurons in areas 17 and 18 of the ferret by combining reversible thermal deactivation in one hemisphere with optical imaging of intrinsic signals and single-cell electrophysiology in the other hemisphere. We found interhemispheric influences on both the strength and specificity of the responses to stimulus orientation and direction of motion, predominantly at the VM. However, neurons and domains preferring cardinal contours, in particular vertical contours, seem to receive stronger interhemispheric input than others. This finding is compatible with interhemispheric connections being involved in horizontal disparity tuning. In conclusion, our results support the view that interhemispheric interactions mainly perform integrative functions similar to those of connections intrinsic to one hemisphere

    Posterior inferotemporal cortex cells use multiple input pathways for shape encoding

    Get PDF
    In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways.Wedid not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated “PIT” units with different input histories (lacking “V2|3 or “V4 input) allowed for comparable levels of object-decoding performance and that removing a large fraction of “PIT” activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT

    Effects of core auditory cortex deactivation on neuronal response to simple and complex acoustic signals in the contralateral anterior auditory field

    Get PDF
    Interhemispheric communication has been implicated in various functions of sensory signal processing and perception. Despite ample evidence demonstrating this phenomenon in the visual and somatosensory systems, to date, limited functional assessment of transcallosal transmission during periods of acoustic signal exposure has hindered our understanding of the role of interhemispheric connections between auditory cortical fields. Consequently, the present investigation examines the impact of core auditory cortical field deactivation on response properties of contralateral anterior auditory field (AAF) neurons in the felis catus. Single-unit responses to simple and complex acoustic signals were measured across AAF before, during, and after individual and combined cooling deactivation of contralateral primary auditory cortex (A1) and AAF neurons. Data analyses revealed that on average: 1) interhemispheric projections from core auditory areas to contralateral AAF neurons are predominantly excitatory, 2) changes in response strength vary based on acoustic features, 3) A1 and AAF projections can modulate AAF activity differently, 4) decreases in response strength are not specific to particular cortical laminae, and 5) contralateral inputs modulate AAF neuronal response thresholds. Collectively, these observations demonstrate that A1 and AAF neurons predominantly modulate AAF response properties via excitatory projections

    Synaptic Basis for Cross-modal Plasticity: Enhanced Supragranular Dendritic Spine Density in Anterior Ectosylvian Auditory Cortex of the Early Deaf Cat

    Get PDF
    In the cat, the auditory field of the anterior ectosylvian sulcus (FAES) is sensitive to auditory cues and its deactivation leads to orienting deficits toward acoustic, but not visual, stimuli. However, in early deaf cats, FAES activity shifts to the visual modality and its deactivation blocks orienting toward visual stimuli. Thus, as in other auditory cortices, hearing loss leads to cross-modal plasticity in the FAES. However, the synaptic basis for cross-modal plasticity is unknown. Therefore, the present study examined the effect of early deafness on the density, distribution, and size of dendritic spines in the FAES. Young cats were ototoxically deafened and raised until adulthood when they (and hearing controls) were euthanized, the cortex stained using Golgi-Cox, and FAES neurons examined using light microscopy. FAES dendritic spine density averaged 0.85 spines/μm in hearing animals, but was significantly higher (0.95 spines/μm) in the early deaf. Size distributions and increased spine density were evident specifically on apical dendrites of supragranular neurons. In separate tracer experiments, cross-modal cortical projections were shown to terminate predominantly within the supragranular layers of the FAES. This distributional correspondence between projection terminals and dendritic spine changes indicates that cross-modal plasticity is synaptically based within the supragranular layers of the early deaf FAES
    corecore