48 research outputs found
A Meta Study on the Implications of Thermoelectric Generation on Hybrid Photovoltaic Systems
The focus of this paper is a meta-study analysis of the efficiency of hybrid thermal and photovoltaic (PV) energy systems and how various materials and specific temperature ranges for thermoelectric (TE) generation can increase their efficiency. This meta-study focuses on papers obtained from ACS NANO, Scopus, Web of Science and Nature which discuss the theoretical and practical implementation of TE and PV systems, with various hybrid systems being considered. Analysed is the Figure of Merit from various hybrid TE and PV integrated systems, the effect of energy efficiency and power generation on different PV system temperatures, and output over area. The total efficiency of the hybrid system is found to have a considerable effect in all papers analysed, with an increase of 5 to 10 percent efficiency in energy output due to the thermoelectric generator (TEG) section, with this maximum efficiency occurring approximately in a 25 kelvin range [1]. A maximum output of 125 W peaks can be maintained for systems efficiently over 600 W/m2 modules, this is an up to 5 percent total efficiency increase in power output in the previously discussed 25 kelvin range [2]. The papers proposed demonstrate the more efficient implementations, potential for further study and implementation of hybrid systems within specific temperature and operating conditions
Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators
It is shown that the requirements for high quality electron bunch generation
and trapping from an underdense photocathode in plasma wakefield accelerators
can be substantially relaxed through localizing it on a plasma density
downramp. This depresses the phase velocity of the accelerating electric field
until the generated electrons are in phase, allowing for trapping in shallow
trapping potentials. As a consequence the underdense photocathode technique is
applicable by a much larger number of accelerator facilities. Furthermore, dark
current generation is effectively suppressed.Comment: 4 pages, 3 figure
Kate 2012
Each year, kate seeks to: explore ideas about normative gender, sex, and sexuality work against oppression and hierarchies of power in any and all forms serve as a voice for race and gender equity as well as queer positivity encourage the silent to speak and feel less afraid build a zine and community that we care about and trusthttps://digitalcommons.otterbein.edu/kate/1007/thumbnail.jp
Black gold: trustworthiness in artistic research (seen from the sidelines of arts and health)
Rigour plays a central role in contemporary research culture. But how appropriate a concept is it to think, perform, and make judgements with on what is trustworthy and excellent in artistic research and its neighbouring field of arts and health? The historical meanings of rigour suggest severity and rigidity: straight lines, austere habits, privations. As a word, rigour has a mixed ancestry – French, Latin, Middle English. Some of its earliest uses coincide with a feudal system of government in Europe, with rigge [verb] meaning to plough a straight line in a narrow strip, and rig [verb] to provide a straight ridge to a house. Rig [noun] a derivation of ridge, was used in England five hundred years ago of human and animal backbones, perhaps reflecting everyday physical burdens. Rigours [noun] conveyed the meting out of un-cautioned punishments and cruelty. While the temperament of rigour might be appropriate for research that follows pre-set norms and standards of repeatability, its use to judge what is trustworthy in artistic research is questionable. Though artistic researchers need to understand the rigour concept, by contrast, artistic research as a kind of ‘thinking through making’ (Ravetz, 2011, 159; Ingold, 2013, 6), places value on improvisation, chance encounter, unforeseen admixture and the in- and outward- folding of process, affect and material. Once it is accepted that poiesis is part of the research process (Ingold, 2013; Haraway, 2016), it becomes apparent that artistic research cannot easily accommodate straight backed rigour
High-quality health systems in the Sustainable Development Goals era: time for a revolution.
Executive summary: Although health outcomes have improved in low-income and middle-income countries (LMICs) in the past several decades, a new reality is at hand. Changing health needs, growing public expectations, and ambitious new health goals are raising the bar for health systems to produce better health outcomes and greater social value. But staying on current trajectory will not suffice to meet these demands. What is needed are high-quality health systems that optimise health care in each given context by consistently delivering care that improves or maintains health, by being valued and trusted by all people, and by responding to changing population needs. Quality should not be the purview of the elite or an aspiration for some distant future; it should be the DNA of all health systems. Furthermore, the human right to health is meaningless without good quality care because health systems cannot improve health without it. We propose that health systems be judged primarily on their impacts, including better health and its equitable distribution; on the confidence of people in their health system; and on their economic benefit, and processes of care, consisting of competent care and positive user experience. The foundations of high-quality health systems include the population and their health needs and expectations, governance of the health sector and partnerships across sectors, platforms for care delivery, workforce numbers and skills, and tools and resources, from medicines to data. In addition to strong foundations, health systems need to develop the capacity to measure and use data to learn. High-quality health systems should be informed by four values: they are for people, and they are equitable, resilient, and efficient. For this Commission, we examined the literature, analysed surveys, and did qualitative and quantitative research to evaluate the quality of care available to people in LMICs across a range of health needs included in the Sustainable Development Goals (SDGs). We explored the ethical dimensions of high-quality care in resource-constrained settings and reviewed available measures and improvement approaches. We reached five conclusions: The care that people receive is often inadequate, and poor-quality care is common across conditions and countries, with the most vulnerable populations faring the worst Data from a range of countries and conditions show systematic deficits in quality of care. In LMICs, mothers and children receive less than half of recommended clinical actions in a typical preventive or curative visit, less than half of suspected cases of tuberculosis are correctly managed, and fewer than one in ten people diagnosed with major depressive disorder receive minimally adequate treatment. Diagnoses are frequently incorrect for serious conditions, such as pneumonia, myocardial infarction, and newborn asphyxia. Care can be too slow for conditions that require timely action, reducing chances of survival. At the system level, we found major gaps in safety, prevention, integration, and continuity, reflected by poor patient retention and insufficient coordination across platforms of care. One in three people across LMICs cited negative experiences with their health system in the areas of attention, respect, communication, and length of visit (visits of 5 min are common); on the extreme end of these experiences were disrespectful treatment and abuse. Quality of care is worst for vulnerable groups, including the poor, the less educated, adolescents, those with stigmatised conditions, and those at the edges of health systems, such as people in prisons. Universal health coverage (UHC) can be a starting point for improving the quality of health systems. Improving quality should be a core component of UHC initiatives, alongside expanding coverage and financial protection. Governments should start by establishing a national quality guarantee for health services, specifying the level of competence and user experience that people can expect. To ensure that all people will benefit from improved services, expansion should prioritise the poor and their health needs from the start. Progress on UHC should be measured through effective (quality-corrected) coverage. High-quality health systems could save over 8 million lives each year in LMICs More than 8 million people per year in LMICs die from conditions that should be treatable by the health system. In 2015 alone, these deaths resulted in US$6 trillion in economic losses. Poor-quality care is now a bigger barrier to reducing mortality than insufficient access. 60% of deaths from conditions amenable to health care are due to poor-quality care, whereas the remaining deaths result from non-utilisation of the health system. High-quality health systems could prevent 2·5 million deaths from cardiovascular disease, 1 million newborn deaths, 900 000 deaths from tuberculosis, and half of all maternal deaths each year. Quality of care will become an even larger driver of population health as utilisation of health systems increases and as the burden of disease shifts to more complex conditions. The high mortality rates in LMICs for treatable causes, such as injuries and surgical conditions, maternal and newborn complications, cardiovascular disease, and vaccine preventable diseases, illustrate the breadth and depth of the health-care quality challenge. Poor-quality care can lead to other adverse outcomes, including unnecessary health-related suffering, persistent symptoms, loss of function, and a lack of trust and confidence in health systems. Waste of resources and catastrophic expenditures are economic side effects of poor-quality health systems. As a result of this, only one-quarter of people in LMICs believe that their health systems work well. Health systems should measure and report what matters most to people, such as competent care, user experience, health outcomes, and confidence in the system Measurement is key to accountability and improvement, but available measures do not capture many of the processes and outcomes that matter most to people. At the same time, data systems generate many metrics that produce inadequate insight at a substantial cost in funds and health workers' time. For example, although inputs such as medicines and equipment are commonly counted in surveys, these are weakly related to the quality of care that people receive. Indicators such as proportion of births with skilled attendants do not reflect quality of childbirth care and might lead to false complacency about progress in maternal and newborn health. This Commission calls for fewer, but better, measures of health system quality to be generated and used at national and subnational levels. Countries should report health system performance to the public annually by use of a dashboard of key metrics (eg, health outcomes, people's confidence in the system, system competence, and user experience) along with measures of financial protection and equity. Robust vital registries and trustworthy routine health information systems are prerequisites for good performance assessment. Countries need agile new surveys and real-time measures of health facilities and populations that reflect the health systems of today and not those of the past. To generate and interpret data, countries need to invest in national institutions and professionals with strong quantitative and analytical skills. Global development partners can support the generation and testing of public goods for health system measurement (civil and vital registries, routine data systems, and routine health system surveys) and promote national and regional institutions and the training and mentoring of scientists. New research is crucial for the transformation of low-quality health systems to high-quality ones Data on care quality in LMICs do not reflect the current disease burden. In many of these countries, we know little about quality of care for respiratory diseases, cancer, mental health, injuries, and surgery, as well as the care of adolescents and elderly people. There are vast blind spots in areas such as user experience, system competence, confidence in the system, and the wellbeing of people, including patient-reported outcomes. Measuring the quality of the health system as a whole and across the care continuum is essential, but not done. Filling in these gaps will require not only better routine health information systems for monitoring, but also new research, as proposed in the research agenda of this Commission. For example, research will be needed to rigorously evaluate the effects and costs of recommended improvement approaches on health, patient experience, and financial protection. Implementation science studies can help discern the contextual factors that promote or hinder reform. New data collection and research should be explicitly designed to build national and regional research capacity. Improving quality of care will require system-wide action To address the scale and range of quality deficits we documented in this Commission, reforming the foundations of the health system is required. Because health systems are complex adaptive systems that function at multiple interconnected levels, fixes at the micro-level (ie, health-care provider or clinic) alone are unlikely to alter the underlying performance of the whole system. However, we found that interventions aimed at changing provider behaviour dominate the improvement field, even though many of these interventions have a modest effect on provider performance and are difficult to scale and sustain over time. Achieving high-quality health systems requires expanding the space for improvement to structural reforms that act on the foundations of the system. This Commission endorses four universal actions to raise quality across the health system. First, health system leaders need to govern for quality by adopting a shared vision of quality care, a clear quality strategy, strong regulation, and continuous learning. Ministries of health cannot accomplish this alone and need to partner with the private sector, civil society, and sectors outside of health care, such as education, infrastructure, communication, and transport. Second, countries should redesign service delivery to maximise health outcomes rather than geographical access to services alone. Primary care could tackle a greater range of low-acuity conditions, whereas hospitals or specialised health centres should provide care for conditions, such as births, that need advanced clinical expertise or have the risk of unexpected complications. Third, countries should transform the health workforce by adopting competency-based clinical education, introducing training in ethics and respectful care, and better supporting and respecting all workers to deliver the best care possible. Fourth, governments and civil society should ignite demand for quality in the population to empower people to hold systems accountable and actively seek high-quality care. Additional targeted actions in areas such as health financing, management, district-level learning, and others can complement these efforts. What works in one setting might not work elsewhere, and improvement efforts should be adapted for local context and monitored. Funders should align their support with system-wide strategies rather than contribute to the proliferation of micro-level efforts. In this Commission, we assert that providing health services without guaranteeing a minimum level of quality is ineffective, wasteful, and unethical. Moving to a high-quality health system—one that improves health and generates confidence and economic benefits—is primarily a political, not technical, decision. National governments need to invest in high-quality health systems for their own people and make such systems accountable to people through legislation, education about rights, regulation, transparency, and greater public participation. Countries will know that they are on the way towards a high-quality, accountable health system when health workers and policymakers choose to receive health care in their own public institutions.Fil: Kruk, Margaret E.. Harvard University. Harvard School of Public Health; Estados UnidosFil: Gage, Anna D.. Harvard University. Harvard School of Public Health; Estados UnidosFil: Arsenault, Catherine. Harvard University. Harvard School of Public Health; Estados UnidosFil: Jordan, Keely. New York College of Global Public Health; Estados UnidosFil: Leslie, Hannah H.. Harvard University. Harvard School of Public Health; Estados UnidosFil: Roder DeWan, Sanam. Harvard University. Harvard School of Public Health; Estados UnidosFil: Adeyi, Olusoji. Banco Mundial; Estados UnidosFil: Barker, Pierre. Institute For Healthcare Improvement; Estados UnidosFil: Daelmans, Bernadette. Organizacion Mundial de la Salud; SuizaFil: Doubova, Svetlana V.. Instituto Mexicano del Seguro Social; MéxicoFil: English, Mike. KEMRI - Wellcome Trust; KeniaFil: Garcia Elorrio, Ezequiel. Instituto de Efectividad Clínica y Sanitaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guanais, Frederico. Banco Interamericano de Desarrollo; Estados UnidosFil: Gureje, Oye. University Of Ibadan; NigeriaFil: Hirschhorn, Lisa R.. Northwestern University; Estados UnidosFil: Jiang, Lixin. National Center For Cardiovascular Diseases; ChinaFil: Kelley, Edward. Organizacion Mundial de la Salud; SuizaFil: Lemango, Ephrem Tekle. Federal Ministry of Health; EtiopíaFil: Liljestrand, Jerker. Bill and Melinda Gates Foundation; Estados UnidosFil: Malata, Address. Malawi University Of Science And Technology; MalauiFil: Marchant, Tanya. London School of Hygiene & Tropical Medicine; Reino UnidoFil: Matsoso, Malebona Precious. National Department of Health of the Republic of South Africa; SudáfricaFil: Meara, John G.. Harvard Medical School; Estados UnidosFil: Mohanan, Manoj. University of Duke; Estados UnidosFil: Ndiaye, Youssoupha. Ministry of Health and Social Action of the Republic of Senegal; SenegalFil: Norheim, Ole F.. University of Bergen; NoruegaFil: Reddy, K. Srinath. Public Health Foundation of India; IndiaFil: Rowe, Alexander K.. Centers for Disease Control and Prevention; Estados UnidosFil: Salomon, Joshua A.. Stanford University School Of Medicine; Estados UnidosFil: Thapa, Gagan. Legislature Parliament Of Nepal; NepalFil: Twum Danso, Nana A. Y.. Maza; GhanaFil: Pate, Muhammad. Big Win Philanthropy; Reino Unid
Regulating amyloid precursor protein synthesis through an internal ribosomal entry site
Expression of amyloid precursor protein (APP) is critical to the etiology of Alzheimer's disease (AD). Consequently, regulating APP expression is one approach to block disease progression. To this end, APP can be targeted at the levels of transcription, translation, and protein stability. Little is currently known about the translation of APP mRNA. Here, we report that endogenous APP mRNA is translated in neural cell lines via an internal ribosome entry site (IRES) located in the 5′-untranslated leader. The functional unit of the APP IRES is located within the 5′ 50 nucleotides of the 5′-leader. In addition, we found that the APP IRES is positively regulated by two conditions correlated with AD, increased intracellular iron concentration and ischemia. Interestingly, the enhancement of APP IRES activity is dependent upon de novo transcription. Taken together, our data suggest that internal initiation of translation of the APP mRNA is an important mode for synthesis of APP, a mechanism which is regulated by conditions that also contribute to AD
Cost-effectiveness of adding indoor residual spraying to case management in Afghan refugee settlements in Northwest Pakistan during a prolonged malaria epidemic.
INTRODUCTION: Financing of malaria control for displaced populations is limited in scope and duration, making cost-effectiveness analyses relevant but difficult. This study analyses cost-effectiveness of adding prevention through targeted indoor residual spraying (IRS) to case management in Afghan refugee settlements in Pakistan during a prolonged malaria epidemic. METHODS/FINDINGS: An intervention study design was selected, taking a societal perspective. Provider and household costs of vector control and case management were collected from provider records and community survey. Health outcomes (e.g. cases and DALYs averted) were derived and incremental cost-effectiveness ratios (ICERs) for cases prevented and DALYs averted calculated. Population, treatment cost, women's time, days of productivity lost, case fatality rate, cases prevented, and DALY assumptions were tested in sensitivity analysis. Malaria incidence peaked at 44/1,000 population in year 2, declining to 14/1,000 in year 5. In total, 370,000 malaria cases, 80% vivax, were diagnosed and treated and an estimated 67,988 vivax cases and 18,578 falciparum and mixed cases prevented. Mean annual programme cost per capita was US39; US43 in years 1-3, US182 for falciparum (US680 in years 4-5). Per DALY averted this was US220 in years 1-3 and US$486 in years 4-5) and thus 'highly cost-effective' or cost-effective using WHO and comparison thresholds. CONCLUSIONS: Adding IRS was cost-effective in this moderate endemicity, low mortality setting. It was more cost-effective when transmission was highest, becoming less so as transmission reduced. Because vivax was three times more common than falciparum and the case fatality rate was low, cost-effectiveness estimations for cases prevented appear reliable and more definitive for vivax malaria
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University