112 research outputs found
A Comprehensive Archival Search for Counterparts to Ultra-Compact High Velocity Clouds: Five Local Volume Dwarf Galaxies
We report five Local Volume dwarf galaxies (two of which are presented here
for the first time) uncovered during a comprehensive archival search for
optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC
population of HI clouds are thought to be candidate gas-rich, low mass halos at
the edge of the Local Group and beyond, but no comprehensive search for stellar
counterparts to these systems has been presented. Careful visual inspection of
all publicly available optical and ultraviolet imaging at the position of the
UCHVCs revealed six blue, diffuse counterparts with a morphology consistent
with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all
six candidate dwarf counterparts show that five have an H-derived
velocity consistent with the coincident HI cloud, confirming their association,
the sixth diffuse counterpart is likely a background object. The size and
luminosity of the UCHVC dwarfs is consistent with other known Local Volume
dwarf irregular galaxies. The gas fraction () of the five
dwarfs are generally consistent with that of dwarf irregular galaxies in the
Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC
HVC274.68+74.70123) has a very high 40. Despite the
heterogenous nature of our search, we demonstrate that the current dwarf
companions to UCHVCs are at the edge of detectability due to their low surface
brightness, and that deeper searches are likely to find more stellar systems.
If more sensitive searches do not reveal further stellar counterparts to
UCHVCs, then the dearth of such systems around the Local Group may be in
conflict with CDM simulations.Comment: 18 pages, 4 tables, 4 figures, ApJ Accepte
Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer
Many prostate cancers relapse after initial chemotherapy treatment. Combining molecular and chemotherapy together with encapsulation of drugs in nanocarriers provides effective drug delivery and toxicity reduction. We developed core shell lipid-polymer hybrid nanoparticles (CSLPHNPs) with poly (lactic-co-glycolic acid) (PLGA) core and lipid layer containing docetaxel and clinically used inhibitor of sphingosine kinase 1 (SK1) FTY720 (fingolimod). We show for the first time that FTY720 (both free and in CSLPHNPs) re-sensitizes castrate resistant prostate cancer cells and tumors to docetaxel, allowing a four-fold reduction in effective dose. Our CSLPHNPs showed high serum stability and a long shelf life. CSLPHNPs demonstrated a steady uptake by tumor cells, sustained intracellular drug release and in vitro efficacy superior to free therapies. In a mouse model of human prostate cancer, CSLPHNPs showed excellent tumor targeting and significantly lower side effects compared to free drugs, importantly, reversing lymphopenia induced by FTY720. Overall, we demonstrate that nanoparticle encapsulation can improve targeting, provide low off-target toxicity and most importantly reduce FTY720-induced lymphopenia, suggesting its potential use in clinical cancer treatment
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
Multiwavelength observations of V407 Lupi (ASASSN-16kt) --- a very fast nova erupting in an intermediate polar
We present a detailed study of the 2016 eruption of nova V407 Lupi (ASASSN-16kt), including optical, near-infrared, X-ray, and ultraviolet data from SALT, SMARTS, SOAR, Chandra, Swift, and XMM-Newton. Timing analysis of the multiwavelength light-curves shows that, from 168 days post-eruption and for the duration of the X-ray supersoft source phase, two periods at 565 s and 3.57 h are detected. We suggest that these are the rotational period of the white dwarf and the orbital period of the binary, respectively, and that the system is likely to be an intermediate polar. The optical light-curve decline was very fast ( 2.9 d), suggesting that the white dwarf is likely massive ( M). The optical spectra obtained during the X-ray supersoft source phase exhibit narrow, complex, and moving emission lines of He II, also characteristics of magnetic cataclysmic variables. The optical and X-ray data show evidence for accretion resumption while the X-ray supersoft source is still on, possibly extending its duration
Predicting Novel Binding Modes of Agonists to β Adrenergic Receptors Using All-Atom Molecular Dynamics Simulations
Understanding the binding mode of agonists to adrenergic receptors is crucial to enabling improved rational design of new therapeutic agents. However, so far the high conformational flexibility of G protein-coupled receptors has been an obstacle to obtaining structural information on agonist binding at atomic resolution. In this study, we report microsecond classical molecular dynamics simulations of β1 and β2 adrenergic receptors bound to the full agonist isoprenaline and in their unliganded form. These simulations show a novel agonist binding mode that differs from the one found for antagonists in the crystal structures and from the docking poses reported by in silico docking studies performed on rigid receptors. Internal water molecules contribute to the stabilization of novel interactions between ligand and receptor, both at the interface of helices V and VI with the catechol group of isoprenaline as well as at the interface of helices III and VII with the ethanolamine moiety of the ligand. Despite the fact that the characteristic N-C-C-OH motif is identical in the co-crystallized ligands and in the full agonist isoprenaline, the interaction network between this group and the anchor site formed by Asp(3.32) and Asn(7.39) is substantially different between agonists and inverse agonists/antagonists due to two water molecules that enter the cavity and contribute to the stabilization of a novel network of interactions. These new binding poses, together with observed conformational changes in the extracellular loops, suggest possible determinants of receptor specificity
Hubble Space Telescope Imaging of Globular Cluster Candidates in Low Surface Brightness Dwarf Galaxies
Fifty-seven nearby low surface brightness dwarf galaxies were searched for
globular cluster candidates (GCCs) using Hubble Space Telescope WFPC2 imaging
in V and I. The sample consists of 18 dwarf spheroidal (dSph), 36 irregular
(dIrr), and 3 "transition" type (dIrr/dSph) galaxies with angular sizes less
than 3.7 kpc situated at distances 2-6 Mpc in the field and in the nearby
groups: M81, Centaurus A, Sculptor, Canes Venatici I cloud. We find that ~50%
of dSph, dIrr/dSph, and dIrr galaxies contain GCCs. The fraction of GCCs
located near the center of dwarf spheroidal galaxies is >2 times higher than
that for dIrrs. The mean integral color of GCCs in dSphs, V-I = 1.04+/-0.16
mag, coincides with the corresponding value for Galactic globular clusters and
is similar to the blue globular cluster sub-populations in massive early-type
galaxies. The color distribution for GCCs in dIrrs shows a clear bimodality
with peaks near V-I = 0.5 and 1.0 mag. Blue GCCs are presumably young with ages
t < 1 Gyr, while the red GCC population is likely to be older. The detected
GCCs have absolute visual magnitudes between M_V = -10 and -5 mag. We find
indications for an excess population of faint GCCs with M_V > -6.5 mag in both
dSph and dIrr galaxies, reminiscent of excess populations of faint globular
clusters in nearby Local Group spiral galaxies. The measurement of structural
parameters using King-profile fitting reveals that most GCCs have structural
parameters similar to extended outer halo globular clusters in the Milky Way
and M31, as well as the recently discovered population of "faint fuzzy"
clusters in nearby lenticular galaxies.Comment: A&A accepted, 17 page
The MAVERIC Survey: A Red Straggler Binary with an Invisible Companion in the Galactic Globular Cluster M10
We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s−1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual "red straggler" component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i < 4°) orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities
The Gravity Collective: A Search for the Electromagnetic Counterpart to the Neutron Star-Black Hole Merger GW190814
We present optical follow-up imaging obtained with the Katzman Automatic
Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel
Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo
gravitational wave (GW) signal from the neutron star-black hole (NSBH) merger
GW190814. We searched the GW190814 localization region (19 deg for the
90th percentile best localization), covering a total of 51 deg and 94.6%
of the two-dimensional localization region. Analyzing the properties of 189
transients that we consider as candidate counterparts to the NSBH merger,
including their localizations, discovery times from merger, optical spectra,
likely host-galaxy redshifts, and photometric evolution, we conclude that none
of these objects are likely to be associated with GW190814. Based on this
finding, we consider the likely optical properties of an electromagnetic
counterpart to GW190814, including possible kilonovae and short gamma-ray burst
afterglows. Using the joint limits from our follow-up imaging, we conclude that
a counterpart with an -band decline rate of 0.68 mag day, similar to
the kilonova AT 2017gfo, could peak at an absolute magnitude of at most
mag (50% confidence). Our data are not constraining for ''red'' kilonovae and
rule out ''blue'' kilonovae with (30% confidence). We
strongly rule out all known types of short gamma-ray burst afterglows with
viewing angles 17 assuming an initial jet opening angle of
and explosion energies and circumburst densities similar to
afterglows explored in the literature. Finally, we explore the possibility that
GW190814 merged in the disk of an active galactic nucleus, of which we find
four in the localization region, but we do not find any candidate counterparts
among these sources.Comment: 86 pages, 9 figure
- …
