1,880 research outputs found

    Observing Brownian motion in vibration-fluidized granular matter

    Full text link
    At the beginning of last century, Gerlach and Lehrer observed the rotational Brownian motion of a very fine wire immersed in an equilibrium environment, a gas. This simple experiment eventually permitted the full development of one of the most important ideas of equilibrium statistical mechanics: the very complicated many-particle problem of a large number of molecules colliding with the wire, can be represented by two macroscopic parameters only, namely viscosity and the temperature. Can this idea, mathematically developed in the so-called Langevin model and the fluctuation-dissipation theorem be used to describe systems that are far from equilibrium? Here we address the question and reproduce the Gerlach and Lehrer experiment in an archetype non-equilibrium system, by immersing a sensitive torsion oscillator in a granular system of millimetre-size grains, fluidized by strong external vibrations. The vibro-fluidized granular medium is a driven environment, with continuous injection and dissipation of energy, and the immersed oscillator can be seen as analogous to an elastically bound Brownian particle. We show, by measuring the noise and the susceptibility, that the experiment can be treated, in first approximation, with the same formalism as in the equilibrium case, giving experimental access to a ''granular viscosity'' and an ''effective temperature'', however anisotropic and inhomogeneous, and yielding the surprising result that the vibro-fluidized granular matter behaves as a ''thermal'' bath satisfying a fluctuation-dissipation relation

    Evolution of associative learning in chemical networks

    Get PDF
    Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are reasonably well understood, mechanisms within single cells that could allow associative learning have received little attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the ’memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene regulatory, or a mixture of these networks in cells

    Slow nonequilibrium dynamics: parallels between classical and quantum glasses and gently driven systems

    Full text link
    We review an scenario for the non-equilibrium dynamics of glassy systems that has been motivated by the exact solution of simple models. This approach allows one to set on firmer grounds well-known phenomenological theories. The old ideas of entropy crisis, fictive temperatures, free-volume... have clear definitions within these models. Aging effects in the glass phase are also captured. One of the salient features of the analytic solution, the breakdown of the fluctuation-dissipation relations, provides a definition of a bonafide {\it effective temperature} that is measurable by a thermometer, controls heat flows, partial equilibrations, and the reaction to the external injection of heat. The effective temperature is an extremely robust concept that appears in non-equilibrium systems in the limit of small entropy production as, for instance, sheared fluids, glasses at low temperatures when quantum fluctuations are relevant, tapped or vibrated granular matter, etc. The emerging scenario is one of partial equilibrations, in which glassy systems arrange their internal degrees of freedom so that the slow ones select their own effective temperatures. It has been proven to be consistent within any perturbative resummation scheme (mode coupling, etc) and it can be challenged by experimental and numerical tests, some of which it has already passed.Comment: 15 pages, 8 figure

    Information processing using a single dynamical node as complex system

    Get PDF
    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing

    Reservoir Topology in Deep Echo State Networks

    Full text link
    Deep Echo State Networks (DeepESNs) recently extended the applicability of Reservoir Computing (RC) methods towards the field of deep learning. In this paper we study the impact of constrained reservoir topologies in the architectural design of deep reservoirs, through numerical experiments on several RC benchmarks. The major outcome of our investigation is to show the remarkable effect, in terms of predictive performance gain, achieved by the synergy between a deep reservoir construction and a structured organization of the recurrent units in each layer. Our results also indicate that a particularly advantageous architectural setting is obtained in correspondence of DeepESNs where reservoir units are structured according to a permutation recurrent matrix.Comment: Preprint of the paper published in the proceedings of ICANN 201

    Richness of Deep Echo State Network Dynamics

    Full text link
    Reservoir Computing (RC) is a popular methodology for the efficient design of Recurrent Neural Networks (RNNs). Recently, the advantages of the RC approach have been extended to the context of multi-layered RNNs, with the introduction of the Deep Echo State Network (DeepESN) model. In this paper, we study the quality of state dynamics in progressively higher layers of DeepESNs, using tools from the areas of information theory and numerical analysis. Our experimental results on RC benchmark datasets reveal the fundamental role played by the strength of inter-reservoir connections to increasingly enrich the representations developed in higher layers. Our analysis also gives interesting insights into the possibility of effective exploitation of training algorithms based on stochastic gradient descent in the RC field.Comment: Preprint of the paper accepted at IWANN 201

    Integrating protein-protein interactions and text mining for protein function prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional annotation of proteins remains a challenging task. Currently the scientific literature serves as the main source for yet uncurated functional annotations, but curation work is slow and expensive. Automatic techniques that support this work are still lacking reliability. We developed a method to identify conserved protein interaction graphs and to predict missing protein functions from orthologs in these graphs. To enhance the precision of the results, we furthermore implemented a procedure that validates all predictions based on findings reported in the literature.</p> <p>Results</p> <p>Using this procedure, more than 80% of the GO annotations for proteins with highly conserved orthologs that are available in UniProtKb/Swiss-Prot could be verified automatically. For a subset of proteins we predicted new GO annotations that were not available in UniProtKb/Swiss-Prot. All predictions were correct (100% precision) according to the verifications from a trained curator.</p> <p>Conclusion</p> <p>Our method of integrating CCSs and literature mining is thus a highly reliable approach to predict GO annotations for weakly characterized proteins with orthologs.</p

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    The minimization of mechanical work in vibrated granular matter

    Get PDF
    Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
    corecore