246 research outputs found

    The breadth of primary care: a systematic literature review of its core dimensions

    Get PDF
    Background: Even though there is general agreement that primary care is the linchpin of effective health care delivery, to date no efforts have been made to systematically review the scientific evidence supporting this supposition. The aim of this study was to examine the breadth of primary care by identifying its core dimensions and to assess the evidence for their interrelations and their relevance to outcomes at (primary) health system level. Methods: A systematic review of the primary care literature was carried out, restricted to English language journals reporting original research or systematic reviews. Studies published between 2003 and July 2008 were searched in MEDLINE, Embase, Cochrane Library, CINAHL, King's Fund Database, IDEAS Database, and EconLit. Results: Eighty-five studies were identified. This review was able to provide insight in the complexity of primary care as a multidimensional system, by identifying ten core dimensions that constitute a primary care system. The structure of a primary care system consists of three dimensions: 1. governance; 2. economic conditions; and 3. workforce development. The primary care process is determined by four dimensions: 4. access; 5. continuity of care; 6. coordination of care; and 7. comprehensiveness of care. The outcome of a primary care system includes three dimensions: 8. quality of care; 9. efficiency care; and 10. equity in health. There is a considerable evidence base showing that primary care contributes through its dimensions to overall health system performance and health. Conclusions: A primary care system can be defined and approached as a multidimensional system contributing to overall health system performance and health

    Preterm Delivery Disrupts the Developmental Program of the Cerebellum

    Get PDF
    A rapid growth in human cerebellar development occurs in the third trimester, which is impeded by preterm delivery. The goal of this study was to characterize the impact of preterm delivery on the developmental program of the human cerebellum. Still born infants, which meant that all development up to that age had taken place in-utero, were age paired with preterm delivery infants, who had survived in an ex-utero environment, which meant that their development had also taken place outside the uterus. The two groups were assessed on quantitative measures that included molecular markers of granule neuron, purkinje neuron and bergmann glia differentiation, as well as the expression of the sonic hedgehog signaling pathway, that is important for cerebellar growth. We report that premature birth and development in an ex-utero environment leads to a significant decrease in the thickness and an increase in the packing density of the cells within the external granular layer and the inner granular layer well, as a reduction in the density of bergmann glial fibres. In addition, this also leads to a reduced expression of sonic hedgehog in the purkinje layer. We conclude that the developmental program of the cerebellum is specifically modified by events that follow preterm delivery

    Identification and Functional Analysis of a Novel von Willebrand Factor Mutation in a Family with Type 2A von Willebrand Disease

    Get PDF
    von Willebrand factor (VWF) is essential for normal hemostasis. VWF gene mutations cause the hemorrhagic von Willebrand disease (VWD). In this study, a 9-year-old boy was diagnosed as type 2A VWD, based on a history of abnormal bleeding, low plasma VWF antigen and activity, low plasma factor VIII activity, and lack of plasma high-molecular-weight (HMW) VWF multimers. Sequencing analysis detected a 6-bp deletion in exon 28 of his VWF gene, which created a mutant lacking D1529V1530 residues in VWF A2 domain. This mutation also existed in his family members with abnormal bleedings but not in >60 normal controls. In transfected HEK293 cells, recombinant VWF ΔD1529V1530 protein had markedly reduced levels in the conditioned medium (42±4% of wild-type (WT) VWF, p<0.01). The mutant VWF in the medium had less HMW multimers. In contrast, the intracellular levels of the mutant VWF in the transfected cells were significantly higher than that of WT (174±29%, p<0.05), indicating intracellular retention of the mutant VWF. In co-transfection experiments, the mutant reduced WT VWF secretion from the cells. By immunofluorescence staining, the retention of the mutant VWF was identified within the endoplasmic reticulum (ER). Together, we identified a unique VWF mutation responsible for the bleeding phenotype in a patient family with type 2A VWD. The mutation impaired VWF trafficking through the ER, thereby preventing VWF secretion from the cells. Our results illustrate the diversity of VWF gene mutations, which contributes to the wide spectrum of VWD

    Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus

    Get PDF
    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled by genotype I + bc-3 was combined in the fabada line A3308

    Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies

    Get PDF
    The 14-3-3 protein test has been shown to support the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) when associated with an adequate clinical context, and a high differential potential for the diagnosis of sporadic CJD has been attributed to other cerebrospinal fluid (CSF) proteins such as tau protein, S100b and neuron specific enolase (NSE). So far there has been only limited information available about biochemical markers in genetic transmissible spongiform encephalopathies (gTSE), although they represent 10–15% of human TSEs. In this study, we analyzed CSF of 174 patients with gTSEs for 14-3-3 (n = 166), tau protein (n = 78), S100b (n = 46) and NSE (n = 50). Levels of brain-derived proteins in CSF varied in different forms of gTSE. Biomarkers were found positive in the majority of gCJD (81%) and insert gTSE (69%), while they were negative in most cases of fatal familial insomnia (13%) and Gerstmann-Sträussler-Scheinker syndrome (10%). Disease duration and codon 129 genotype influence the findings in a different way than in sporadic CJD

    Carotid ultrasound is useful for the cardiovascular risk stratification in patients with hidradenitis suppurativa

    Get PDF
    INTRODUCTION: Hidradenitis suppurativa (HS) is a chronic inflammatory cutaneous disease which has been associated with an increased risk of adverse cardiovascular (CV) outcomes. Adequate stratification of the CV risk is an issue of major importance in patients with HS. To analyze the usefulness of carotid ultrasound (US) assessment for the CV disease risk stratification compared with a traditional score, the Framingham risk score (FRS), in a series of patients with HS. METHODS: Cross-sectional study of 60 patients with HS without history of CV events, diabetes mellitus or chronic kidney disease. Information on CV risk factors was collected and the FRS was calculated. Thus, the patients were classified into low, intermediate and high-CV disease risk categories based on FRS. Carotid US was performed in all participants, and the presence of atherosclerotic plaques was considered as a marker of high CV risk. RESULTS: HS patients had a mean age of 45.1±10.2 years, and 55% were female. The median FRS was 5.7 (IQR: 3.1-14.7). Twenty-four (40%) of the patients were classified into the low risk group, 28 (46.7%) in the intermediate risk group, and 8 (13.3%) into the FRS-high risk category. Noteworthy, carotid US revealed that about one-third of the patients (17/52; 32.6%) in the FRS-based low and intermediate risk categories had carotid plaques, and, therefore, they were reclassified into a high-risk category. CONCLUSION: CV risk in HS patients may be underestimated by using the FRS. Carotid US may be useful to improve the CV risk stratification of patients with HS.This study was funded through an unrestricted grant provided by AbbVie to MGL. AbbVie has not played any role in study design, data collection and analysis, decision to publish or preparation of the manuscript

    Influence of elevated-CRP level-related polymorphisms in non-rheumatic Caucasians on the risk of subclinical atherosclerosis and cardiovascular disease in rheumatoid arthritis

    Get PDF
    Association between elevated C-reactive protein (CRP) serum levels and subclinical atherosclerosis and cardiovascular (CV) events was described in rheumatoid arthritis (RA). CRP, HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 exert an influence on elevated CRP serum levels in non-rheumatic Caucasians. Consequently, we evaluated the potential role of these genes in the development of CV events and subclinical atherosclerosis in RA patients. Three tag CRP polymorphisms and HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 were genotyped in 2,313 Spanish patients by TaqMan. Subclinical atherosclerosis was determined in 1,298 of them by carotid ultrasonography (by assessment of carotid intima-media thickness-cIMT-and presence/absence of carotid plaques). CRP serum levels at diagnosis and at the time of carotid ultrasonography were measured in 1,662 and 1,193 patients, respectively, by immunoturbidimetry. Interestingly, a relationship between CRP and CRP serum levels at diagnosis and at the time of the carotid ultrasonography was disclosed. However, no statistically significant differences were found when CRP, HNF1A, LEPR, GCKR, NLRP3, IL1F10, PPP1R3B, ASCL1, HNF4A and SALL1 were evaluated according to the presence/absence of CV events, carotid plaques and cIMT after adjustment. Our results do not confirm an association between these genes and CV disease in RA

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery

    Get PDF
    Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer

    Polaritonic molecular clock for all-optical ultrafast imaging of wavepacket dynamics without probe pulses

    Full text link
    Conventional approaches to probing ultrafast molecular dynamics rely on the use of synchronized laser pulses with a well-defined time delay. Typically, a pump pulse excites a molecular wavepacket. A subsequent probe pulse can then dissociate or ionize the molecule, and measurement of the molecular fragments provides information about where the wavepacket was for each time delay. Here, we propose to exploit the ultrafast nuclear-position-dependent emission obtained due to large light–matter coupling in plasmonic nanocavities to image wavepacket dynamics using only a single pump pulse. We show that the time-resolved emission from the cavity provides information about when the wavepacket passes a given region in nuclear configuration space. This approach can image both cavity-modified dynamics on polaritonic (hybrid light–matter) potentials in the strong light–matter coupling regime and bare-molecule dynamics in the intermediate coupling regime of large Purcell enhancements, and provides a route towards ultrafast molecular spectroscopy with plasmonic nanocavitiesThis work has been funded by the European Research Council grant ERC-2016-STG-714870 and the Spanish Ministry for Science, Innovation, and Universities—AEI grants RTI2018-099737-B-I00, PCI2018-093145 (through the QuantERA program of the European Commission), and CEX2018-000805-M (through the María de Maeztu program for Units of Excellence in R&D
    corecore