45 research outputs found

    Initial State Interactions for KK^--Proton Radiative Capture

    Full text link
    The effects of the initial state interactions on the KpK^--p radiative capture branching ratios are examined and found to be quite sizable. A general coupled-channel formalism for both strong and electromagnetic channels using a particle basis is presented, and applied to all the low energy KpK^--p data with the exception of the {\it 1s} atomic level shift. Satisfactory fits are obtained using vertex coupling constants for the electromagnetic channels that are close to their expected SU(3) values.Comment: 16 pages, uses revte

    Proton-proton bremsstrahlung below and above pion-threshold: the influence of the Δ\Delta-isobar

    Full text link
    The proton-proton bremsstrahlung is investigated within a coupled-channel model with the Δ\Delta degree of freedom. The model is consistent with the NNNN scattering up to 1 GeV and the γNΔ\gamma N\Delta vertex determined in the study of pion photoproduction reactions. It is found that the Δ\Delta excitation can significantly improve the agreements with the ppppγpp \rightarrow pp\gamma at Elab=280E_{lab}=280 MeV. Predictions at Elab=550E_{lab}=550 and 800800 MeV are presented for future experimental tests.Comment: 26 pages Revtex, 12 figures are available from the authors upon request ([email protected]

    Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    Get PDF
    The capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO42−) and total cation field strength index of the glass, Σ(z/a2), with a high goodness-of-fit (R2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λth (R2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R2 ≈ 0.919), are used. Results support the application of these models, and in particular Σ(z/a2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities

    Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc

    Get PDF
    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the trench east of the Amlia Fracture Zone, which is being subducting beneath the arc at Seguam Island. Mixing trends between mantle wedge and sediment end members become flatter in Hf-Nd isotope space at locations further west along the arc, indicating that the sediment end member in the west has either higher Nd/Hf or is more radiogenic in Hf compared to Nd. This pattern is interpreted to reflect an increase in pelagic clay relative to the terrigenous subducted sedimentary component westward along the arc. Results of this study imply that Hf does not behave as a conservative element in the Aleutian subduction system, as has been proposed for some other arcs

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop

    Get PDF
    Traditional crops historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over reliant on a small number of internationally-traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (especially where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture. Using short-read, long-read and phased sequencing technologies we generated a high-quality chromosome-level genome assembly for Amaranthus cruentus, an under-researched crop with micronutrient- and protein-rich leaves and gluten-free seed, but lacking improved varieties, with respect to productivity and quality traits. The 370.9 MB genome demonstrates a shared whole genome duplication with a related species, Amaranthus hypochondriacus. Comparative genome analysis indicates chromosomal loss and fusion events following genome duplication that are common to both species, as well as fission of chromosome 2 in A. cruentus alone, giving rise to a haploid chromosome number of 17 (versus 16 in A. hypochondriacus). Genomic features potentially underlying the nutritional value of this crop include two A. cruentus-specific genes with a likely role in phytic acid synthesis (an anti-nutrient), expansion of ion transporter gene families, and identification of biosynthetic gene clusters conserved within the amaranth lineage. The A. cruentus genome assembly will underpin much-needed research and global breeding efforts to develop improved varieties for economically viable cultivation and realisation of the benefits to global nutrition security and agrobiodiversity

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    corecore