266 research outputs found

    Post-traumatic upper cervical subluxation visualized by MRI: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper describes MRI findings of upper cervical subluxation due to alar ligament disruption following a vehicular collision. Incidental findings included the presence of a myodural bridge and a spinal cord syrinx. Chiropractic management of the patient is discussed.</p> <p>Case presentation</p> <p>A 21-year old female presented with complaints of acute, debilitating upper neck pain with unremitting sub-occipital headache and dizziness following a vehicular collision. Initial emergency department and neurologic investigations included x-ray and CT evaluation of the head and neck. Due to persistent pain, the patient sought chiropractic care. MRI of the upper cervical spine revealed previously unrecognized clinical entities.</p> <p>Conclusion</p> <p>This case highlights the identification of upper cervical ligamentous injury that produced vertebral subluxation following a traumatic incident. MRI evaluation provided visualization of previously undetected injury. The patient experienced improvement through chiropractic care.</p

    Online dispute resolution: an artificial intelligence perspective

    Get PDF
    Litigation in court is still the main dispute resolution mode. However, given the amount and characteristics of the new disputes, mostly arising out of electronic contracting, courts are becoming slower and outdated. Online Dispute Resolution (ODR) recently emerged as a set of tools and techniques, supported by technology, aimed at facilitating conflict resolution. In this paper we present a critical evaluation on the use of Artificial Intelligence (AI) based techniques in ODR. In order to fulfill this goal, we analyze a set of commercial providers (in this case twenty four) and some research projects (in this circumstance six). Supported by the results so far achieved, a new approach to deal with the problem of ODR is proposed, in which we take on some of the problems identified in the current state of the art in linking ODR and AI.The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009).Acknowledgments. The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009)

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice

    Get PDF
    Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism

    X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    Get PDF
    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases

    MCP-1 Upregulates Amylin Expression in Murine Pancreatic β Cells through ERK/JNK-AP1 and NF-κB Related Signaling Pathways Independent of CCR2

    Get PDF
    BACKGROUND: Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets. METHODOLOGY/PRINCIPAL FINDINGS: We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression. CONCLUSIONS/SIGNIFICANCE: MCP-1 induces amylin expression through ERK1/2/JNK-AP1 and NF-κB related signaling pathways independent of CCR2. Amylin upregulation by MCP-1 may contribute to elevation of plasma amylin in obesity and insulin resistance
    corecore