18 research outputs found

    Energy Levels of Light Nuclei. III

    Full text link

    �ber den aktiven Phosphor und das Energiespektrum seiner ?-Strahlen

    No full text

    The Reaction Mg 25

    No full text

    Using connectomics for predictive assessment of brain parcellations

    No full text
    The organization of the human brain remains elusive, yet is of great importance to the mechanisms of integrative brain function. At the macroscale, its structural and functional interpretation is conventionally assessed at the level of cortical units. However, the definition and validation of such cortical parcellations are problematic due to the absence of a true gold standard. We propose a framework for quantitative evaluation of brain parcellations via statistical prediction of connectomics data. Specifically, we evaluate the extent in which the network representation at the level of cortical units (defined as parcels) accounts for high-resolution brain connectivity. Herein, we assess the pertinence and comparative ranking of ten existing parcellation atlases to account for functional (FC) and structural connectivity (SC) data based on data from the Human Connectome Project (HCP), and compare them to data-driven as well as spatially-homogeneous geometric parcellations including geodesic parcellations with similar size distributions as the atlases. We find substantial discrepancy in parcellation structures that well characterize FC and SC and differences in what well represents an individual’s functional connectome when compared against the FC structure that is preserved across individuals. Surprisingly, simple spatial homogenous parcellations generally provide good representations of both FC and SC, but are inferior when their within-parcellation distribution of individual parcel sizes is matched to that of a valid atlas. This suggests that the choice of fine grained and coarse representations used by existing atlases are important. However, we find that resolution is more critical than the exact border location of parcels

    A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naive schizophrenia patients based on multimodal neuropsychiatric data

    Get PDF
    The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the design process and analysis in two independent machine-learning approaches, one based on a single algorithm and the other incorporating an ensemble of algorithms. We aimed to (1) classify patients from controls to establish the framework, (2) predict short- and long-term treatment response, and (3) validate the methodological framework. We included 138 antipsychotic-naïve, first-episode schizophrenia patients with data on psychopathology, cognition, electrophysiology, and structural magnetic resonance imaging (MRI). Perinatal data and long-term outcome measures were obtained from Danish registers. Short-term treatment response was defined as change in Positive And Negative Syndrome Score (PANSS) after the initial antipsychotic treatment period. Baseline diagnostic classification algorithms also included data from 151 matched controls. Both approaches significantly classified patients from healthy controls with a balanced accuracy of 63.8% and 64.2%, respectively. Post-hoc analyses showed that the classification primarily was driven by the cognitive data. Neither approach predicted short- nor long-term treatment response. Validation of the framework showed that choice of algorithm and parameter settings in the real data was successfully guided by results from the simulated data. In conclusion, this novel approach holds promise as an important step to minimize bias and obtain reliable results with modest sample sizes when independent replication samples are not available
    corecore