79 research outputs found

    Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions

    Get PDF
    Model studies typically estimate intercontinental influence on surface ozone by perturbing emissions from a source continent and diagnosing the ozone response in the receptor continent. Since the response to perturbations is non-linear due to chemistry, conclusions drawn from different studies may depend on the magnitude of the applied perturbation. We investigate this issue for intercontinental transport between North America, Europe, and Asia with sensitivity simulations in three global chemical transport models. In each region, we decrease anthropogenic emissions of NOx and nonmethane volatile organic compounds (NMVOCs) by 20% and 100%. We find strong nonlinearity in the response to NOx perturbations outside summer, reflecting transitions in the chemical regime for ozone production. In contrast, we find no significant nonlinearity to NOx perturbations in summer or to NMVOC perturbations year-round. The relative benefit of decreasing NOx vs. NMVOC from current levels to abate intercontinental pollution increases with the magnitude of emission reductions

    Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions

    Get PDF
    Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants

    Understanding the glacial methane cycle.

    Get PDF
    Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28-46%, and the lifetime increased by 2-8%, with a best-estimate LGM CH4 concentration of 463-480 p.p.b.v. Simulating the observed LGM concentration requires a 46-49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources

    Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States

    Get PDF
    Global simulations of sulfate, nitrate, and ammonium aerosols are performed for the present day and 2050 using the chemical transport model GEOS-Chem. Changes in climate and emissions projected by the IPCC A1B scenario are imposed separately and together, with the primary focus of the work on future inorganic aerosol levels over the United States. Climate change alone is predicted to lead to decreases in levels of sulfate and ammonium in the southeast U.S. but increases in the Midwest and northeast U.S. Nitrate concentrations are projected to decrease across the U.S. as a result of climate change alone. In the U.S., climate change alone can cause changes in annually averaged sulfate-nitrate-ammonium of up to 0.61 μg/m^3, with seasonal changes often being much larger in magnitude. When changes in anthropogenic emissions are considered (with or without changes in climate), domestic sulfate concentrations are projected to decrease because of sulfur dioxide emission reductions, and nitrate concentrations are predicted to generally increase because of higher ammonia emissions combined with decreases in sulfate despite reductions in emissions of nitrogen oxides. The ammonium burden is projected to increase from 0.24 to 0.36 Tg, and the sulfate burden to increase from 0.28 to 0.40 Tg S as a result of globally higher ammonia and sulfate emissions in the future. The global nitrate burden is predicted to remain essentially constant at 0.35 Tg, with changes in both emissions and climate as a result of the competing effects of higher precursor emissions and increased temperature

    Distribution, variability and sources of tropospheric ozone over south China in spring: intensive ozonesonde measurements at five locations and modeling analysis

    Get PDF
    We examine the characteristics of the spatial distribution and variability of tropospheric ozone (O3) by analysis of 93 ozonesonde profiles obtained at five stations over south China (18–30 N) during a field campaign in April–May 2004. We use a global 3-D chemical transport model (GEOS-Chem) to interpret these characteristics and to quantify the sources of tropospheric O3 over south China during this period. The observed tropospheric O3 mixing ratios showed strong spatiotemporal variability due to a complex interplay of various dynamical and chemical processes. A prominent feature in the upper and middle troposphere (UT/MT) was the frequent occurrence of high O3 mixing ratios shown as tongues extending down from the lower stratosphere or as isolated layers at all stations. The model largely captured the observed pattern of day-to-day variability in tropospheric O3 mixing ratios at all stations, but often underestimated those tongues or isolated layers of O3 enhancements observed in the UT/MT, especially at low-latitude stations. We found that tropospheric O3 along the southeast China coast was mainly produced within Asia. Lightning NOx emissions (over South Asia and equatorial Africa) and/or stratospheric influences were responsible for major events of high O3 observed in the UT/MT at all stations. Underestimated contributions of these sources likely led to the model’s underestimate in the low-latitude UT/MT O3. This study emphasizes the need for improved understanding of lightning NOx emissions and stratospheric influences over the Eurasian and African continents and for better representation of these processes in current global models

    Emissions of NO and NH3 from a Typical Vegetable-Land Soil after the Application of Chemical N Fertilizers in the Pearl River Delta

    Get PDF
    Conceived and designed the experiments: DL. Performed the experiments: DL. Analyzed the data: DL. Contributed reagents/materials/analysis tools: DL. Wrote the paper: DL.Cropland soil is an important source of atmospheric nitric oxide (NO) and ammonia (NH3). Chinese croplands are characterized by intensive management, but limited information is available with regard to NO emissions from croplands in China and NH3 emissions in south China. In this study, a mesocosm experiment was conducted to measure NO and NH3 emissions from a typical vegetable-land soil in the Pearl River Delta following the applications of 150 kg N ha−1 as urea, ammonium nitrate (AN) and ammonium bicarbonate (ABC), respectively. Over the sampling period after fertilization (72 days for NO and 39 days for NH3), mean NO fluxes (± standard error of three replicates) in the control and urea, AN and ABC fertilized mesocosms were 10.9±0.9, 73.1±2.9, 63.9±1.8 and 66.0±4.0 ng N m−2 s−1, respectively; mean NH3 fluxes were 8.9±0.2, 493.6±4.4, 144.8±0.1 and 684.7±8.4 ng N m−2 s−1, respectively. The fertilizer-induced NO emission factors for urea, AN and ABC were 2.6±0.1%, 2.2±0.1% and 2.3±0.2%, respectively. The fertilizer-induced NH3 emission factors for the three fertilizers were 10.9±0.2%, 3.1±0.1% and 15.2±0.4%, respectively. From the perspective of air quality protection, it would be better to increase the proportion of AN application due to its lower emission factors for both NO and NH3.Yeshttp://www.plosone.org/static/editorial#pee
    • …
    corecore