30 research outputs found

    Enhancing wireless sensor networks functionalities

    Full text link
     The main objective of this thesis is to develop solutions for the existing research problems in wireless sensor networks that negatively influence their performances. To achieve that four main research gaps from collecting, aggregating and transferring data with considering different deployment methods of sensor nodes were addressed

    A data fusion method in wireless sensor networks

    Full text link
    The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches

    Venous Thromboembolism Following Travel

    Get PDF
    International travel has become increasingly common and accessible, hence, about two billion passengers undertake international and domestic air travel each year. Venous thromboembolism (VTE) is a serious public health disorder which may occur following prolonged travel, especially after air travel. A direct relation between VTE development and prolonged travels has been documented, while some references did not confirm this relation. The travel-related VTE is a multi-factorial disorder, and the risk of thrombosis is higher in individuals with pre-existing risk factors. Some believe that hypobaric hypoxia was a more likely explanation for thrombus formation during prolonged travel. Other factors including immobilization, dehydration, excessive alcohol or coffee consumption, lower air pressure, and lower humidity can make the traveler prone to thrombus formation. Herein we tried to evaluate previous studies and available guidelines thereby providing information on the association of thrombosis and travel, risk factors, risk assessment, and strategies for the prevention of VTE following travel

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Fuzzy logic optimized wireless sensor network routing protocol

    Full text link
    Wireless sensor networks (WSNs) are used in health monitoring, tracking and security applications. Such networks transfer data from specific areas to a nominated destination. In the network, each sensor node acts as a routing element for other sensor nodes during the transmission of data. This can increase energy consumption of the sensor node. In this paper, we propose a routing protocol for improving network lifetime and performance. The proposed protocol uses type-2 fuzzy logic to minimize the effects of uncertainty produced by the environmental noise. Simulation results show that the proposed protocol performs better than a recently developed routing protocol in terms of extending network lifetime and saving energy and also reducing data packet lost

    An alternative sensor cloud architecture for vital signs monitoring

    Full text link

    An alternative clustering scheme in WSN

    Full text link
    Despite significant advancements in wireless sensor networks (WSNs), energy conservation in the networks remains one of the most important research challenges. One approach commonly used to prolong the network lifetime is through aggregating data at the cluster heads (CHs). However, there is possibility that the CHs may fail and function incorrectly due to a number of reasons such as power instability. During the failure, the CHs are unable to collect and transfer data correctly. This affects the performance of the WSN. Early detection of failure of CHs will reduce the data loss and provide possible minimal recovery efforts. This paper proposes a self-configurable clustering mechanism to detect the disordered CHs and replace them with other nodes. Simulation results verify the effectiveness of the proposed approach

    A new energy efficient cluster-head and backup selection scheme in WSN

    Full text link
    Despite significant advancements in wireless sensor networks (WSNs), energy conservation remains one of the most important research challenges. Proper organization of nodes (clustering) is one of the major techniques to expand the lifespan of the whole network through aggregating data at the cluster head. The cluster head is the backbone of the entire cluster. That means if a cluster head fails to accomplish its function, the received and collected data by cluster head can be lost. Moreover, the energy consumption following direct communications from sources to base stations will be increased. In this paper, we propose a type-2 fuzzy based self-configurable cluster head selection (SCCH) approach to not only consider the selection criterion of the cluster head but also present the cluster backup approach. Thus, in case of cluster failure, the system still works in an efficient way. The novelty of this protocol is the ability of handling communication uncertainty, which is an inherent operational aspect of sensor networks. The experiment results indicate SCCH performs better than other recently developed methods

    Quality control of sensor network data

    Full text link
    A wireless sensor network (WSN) is a group of sensors that are geographically distributed and interconnected by wireless networks. Sensors gather information about the state of physical world. Then, after processing forward them to the main destination. To be able to provide this service, there are many aspects of communication techniques that need to be explored. Supporting quality of service (QoS) will be of critical importance for pervasive WSNs that serve as the network infrastructure of diverse applications. To illustrate new research and development interests in this field, this paper examines and discusses the requirements, critical challenges, and open research issues on QoS management in WSNs. A brief overview of recent progress is given.<br /

    A congestion control scheme based on fuzzy logic in wireless body area networks

    Full text link
    One of the major challenges in healthcare wireless body area network (WBAN) applications is to control congestion. Unpredictable traffic load, many-to-one communication nature and limited bandwidth occupancy are among major reasons that can cause congestion in such applications. Congestion has negative impacts on the overall network performance such as packet losses, increasing end-to-end delay and wasting energy consumption due to a large number of retransmissions. In life-critical applications, any delay in transmitting vital signals may lead to death of a patient. Therefore, in order to enhance the network quality of service (QoS), developing a solution for congestion estimation and control is imperative. In this paper, we propose a new congestion detection and control protocol for remote monitoring of patients health status using WBANs. The proposed system is able to detect congestion by considering local information such as buffer capacity and node rate. In case of congestion, the proposed system differentiates between vital signals and assigns priorities to them based on their level of importance. As a result, the proposed approach provides a better quality of service for transmitting highly important vital signs
    corecore