13 research outputs found

    From Pollution To Solution: a global assessment of marine litter and plastic pollution

    Get PDF
    Outcome from working on the United Nations Environment Programme Advisory Group with the aim to address the UN Environment Assembly’s adopted resolution (UN/EA.4/RES.6) on Marine Plastic Litter and Microplastics by recommending indicators to harmonise monitoring and assessment and informing on policies and action environmentally sound technology innovations

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Experimental investigation of natural fiber reinforced composite

    No full text
    There is a growing use of polymers in different applications worldwide. This phenomenon resulted in an enormous increase in the amount of plastic waste. These wastes have significant impacts on the environment including pollution and depletion of resources. Recycling plastic waste and reusing it helps in alleviating environmental degradation. The amount of recycled plastics all over the world not utilized is huge. U.S.A recycled 5.7% of the total plastics generated and Western Europe recycled 39% of total amount of plastics consumed [1]. This research studies the potential usage of virgin and recycled polymer reinforced with natural fiber such as rice straw to produce high value products that have technical, economical and environmental demand. The use of fiber reinforced polymer became popular during the last ten years. The reinforcing material is embedded in the matrix material to improve its mechanical and physical properties; reinforcing plastic waste with natural fiber is a new trend to enhance the mechanical properties of this composite material. In this study, a composite material was developed using Low density polyethylene (virgin and recycled) as a matrix reinforced with treated rice straw. Tensile and flexural behaviors of the synthelengthd composite were investigated. The results were promising showing an enhancement in the mechanical properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress. While the tensile stress increased from eight times the original tensile stress. However the enhancement for the recycled composite represented two times the original flexural stress and four times the original tensile stress. In an attempt to improve the mechanical properties of the recycled polymer composite, rice straw treatment through carbonization as a reinforcement was investigated and proved higher tensile stress than the chemically treated rice straw by eight times the tensile stress recycled treated and non carbonized fiber , thus approaching the value of the virgin LDPE composite. With this new material produced entirely out of waste, this product will reduce the detrimental problem of solid waste to the environment including saving energy, water and cost. The problem of depletion of natural resources will be minimized. The current practice of disposing plastic waste will decrease as waste will be utilized with high quality. Also the current practice of burning rice straw will be restrained. Finally, an innovative, clean, cheap and effective yet simple technology with different procedures was introduced in this thesis research to determine the suitability of fiber reinforced composites techniques worldwide. There is a growing use of polymers in different applications worldwide. This phenomenon resulted in an enormous increase in the amount of plastic waste. These wastes have significant impacts on the environment including pollution and depletion of resources. Recycling plastic waste and reusing it helps in alleviating environmental degradation. The amount of recycled plastics all over the world not utilized is huge. U.S.A recycled 5.7% of the total plastics generated and Western Europe recycled 39% of total amount of plastics consumed [1]. This research studies the potential usage of virgin and recycled polymer reinforced with natural fiber such as rice straw to produce high value products that have technical, economical and environmental demand. The use of fiber reinforced polymer became popular during the last ten years. The reinforcing material is embedded in the matrix material to improve its mechanical and physical properties; reinforcing plastic waste with natural fiber is a new trend to enhance the mechanical properties of this composite material. In this study, a composite material was developed using Low density polyethylene (virgin and recycled) as a matrix reinforced with treated rice straw. Tensile and flexural behaviors of the synthelengthd composite were investigated. The results were promising showing an enhancement in the mechanical properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress. While the tensile stress increased from eight times the original tensile stress. However the enhancement for the recycled composite represented two times the original flexural stress and four times the original tensile stress. In an attempt to improve the mechanical properties of the recycled polymer composite, rice straw treatment through carbonization as a reinforcement was investigated and proved higher tensile stress than the chemically treated rice straw by eight times the tensile stress recycled treated and non carbonized fiber , thus approaching the value of the virgin LDPE composite. With this new material produced entirely out of waste, this product will reduce the detrimental problem of solid waste to the environment including saving energy, water and cost. The problem of depletion of natural resources will be minimized. The current practice of disposing plastic waste will decrease as waste will be utilized with high quality. Also the current practice of burning rice straw will be restrained. Finally, an innovative, clean, cheap and effective yet simple technology with different procedures was introduced in this thesis research to determine the suitability of fiber reinforced composites techniques worldwide

    Experimental investigation of methyl-orange removal using eco-friendly cost-effective materials raw fava bean peels and their formulated physical, and chemically activated carbon

    No full text
    The discharge of effluents from dye industries into water streams poses a significant environmental and public health risk. In response, eco-friendly adsorbents derived from agricultural waste, such as Fava Bean Peels (R–FBP), have been investigated as potential materials for the removal of such pollutants. In this study, R–FBP and their corresponding physical and chemically activated carbon (P-RFB-AC and C-FBP-AC) were synthesized using H3PO4 acid and characterized using FT-IR, and SEM analyses. An optimization process was conducted to determine the optimum conditions for achieving high Methyl Orange (M. Orange) removal efficiencies using the prepared materials, namely R–FBP, P-RFB-AC, and C-FBP-AC. The adsorption mechanism was examined by analyzing the isotherm and kinetics. The results revealed that the physical raw-activated carbon exhibited the highest removal efficiency of 96.8% compared to other materials. This outcome was achieved through the use of ANN combined with Moth Search Algorithm (MSA), which was found to be the most effective model for achieving the highest M. Orange removal efficiency from Physical raw fava bean activated carbon. Under parameters of 1000 mg/l M. Orange concentration, 2 g/l dose, 15 min contact time, and 120 rpm shaking, the best experimental and predicted removal efficiencies for physical-activated carbon fava bean rind were 96.8 RE%, 96.01 indicated RSM RE%, and 95.75 predicted ANN RE%. The highest experimental and predicted removal efficiencies for the H3PO4 chemical activated carbon fava bean peel were 94%RE. This study aimed to develop an economical solution for treating industrial wastewater contaminated with anionic M. Orange dye using raw fava bean peel and their generated activated carbon, in both physical and chemical forms. The Temkin and Langmuir isotherm models were found to best fit the data for raw fava bean peel, while Temkin agreed well with the data from physical-activated carbon. Temkin and Freundlich's models were fitted with the H3PO4 chemical activated carbon. Pseudo-second-order kinetics was identified as the most suitable model for both physically and chemically activated carbons. Future research may explore the capacity of the produced activated carbon-based algae to extract a wider range of contaminants from contaminated wastewater. In summary, this work contributes to the development of eco-friendly and cost-effective methods for removing dyes, specifically M. Orange, from industrial effluents. By synthesizing and characterizing R–FBP and their relative activated carbon, the adsorption mechanism was studied, and the optimum conditions for achieving high M. Orange removal efficiencies were determined. The results showed that physical raw-activated carbon exhibited the highest removal efficiency, and pseudo-second-order kinetics was the most suitable model for both physically and chemically activated carbon

    Enhanced removal of crystal violet using rawfava bean peels, its chemically activated carbon compared with commercial activated carbon

    No full text
    Crystal violet is a basic dye that is widely used by various industries, such as textiles and paints. These industries discharge their effluents, contaminated with crystal violet, into water streams, and these effluents have an adverse effect on aquatic organisms, the environment, and human health. Crystal violet is a basic dye that is widely used by various industries, such as textiles and paints. These industries discharge their effluents, contaminated with crystal violet, into water streams, and these effluents have an adverse effect on aquatic organisms, the environment, and human health. Hence, this paper is directed at studying the removal of crystal violet using environmentally friendly, cost-effective adsorbent materials such as raw fava bean (RFP-H3F), and chemically activated carbon (H3F) in comparison to commercial activated carbon (CAC).Various characterization techniques are applied, such as XRD, FT-IR,and SEM analyses. Then, the process of optimizing is shown through some preliminary experiments and a Response Surface Methodology (RSM) experiment to find the best conditions for removing crystal violet efficiently. Results revealed that the raw fava bean peels and the commercial activated carbon have the maximum removal efficiency of 95 %, and 83 % respectively, after 180 min of contact time. It is hypothesized that raw fava bean peels (RFP) and chemically activated carbon using phosphoric acid RFP-H3F will exhibit comparable efficiency in removing crystal violet when compared to commercial activated carbon (CAC). Various characterization techniques, including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR),and scanning electron microscopy (SEM), are applied to analyze the properties of the adsorbent materials. Afterwards, the optimization process is displayed through some preliminary experiments followed by a Response Surface Methodology (RSM) experiment to obtain the optimum conditions, which achieve high crystal violet removal efficiency. The results demonstrate that both raw fava bean peels and commercial activated carbon exhibit significant removal efficiencies, with raw fava bean peels achieving a maximum removal efficiency of 95 % and commercial activated carbon achieving 83 %

    Potentials of algae-based activated carbon for the treatment of M.orange in wastewater

    No full text
    Activated carbon is a promising material with high efficiency in dye removal from polluted wastewater. However, commercial activated carbon is expensive and generates black color in the medium. Therefore, searching for low-cost, eco-friendly activated carbon sources such as agricultural wastes and algal biomasses is essential. Hence, this study is directed to prepare the physical and the H3PO4 chemical activated carbon from the algae ”Sargassum dent folium” and the raw algae itself and apply it for Methyl Orange (M. orange) removal from contaminated wastewater and compare its performance with the commercial activated carbon. First, adsorbent materials are prepared and involved in the optimization process for M. orange removal using some preliminary experiments, followed by Response Surface Method-ology (RSM) and Artificial Neural Network (ANN). Finally, Isotherm and kinetics are studied to explain the adsorption mechanism. In contrast to other materials, results show that physical algae-activated carbon achieves the maximum removal efficiency of 96.687%. These results are obtained from ANN combined with Moth Search Algorithm (MSA), representing the most effective model for achieving the highest M. orange removal efficiency from Physical algae activated carbon. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 RE%, 88.5 indicated RSM RE%, and 85.9431 predicted ANN RE%. The best observed and predicted removal efficiencies for the H3PO4 chemical activated carbon are 89.6157 RE%, 82.38 predicted RSM RE%, and 89.5442 predicted ANN RE%. The best experimental and predicted removal efficiencies for the physical-activated carbon are 94.7935 RE%, 95.49 indicated RSM RE%, and 95.4298 predicted ANN RE%. The best observed and predicted removal efficiencies for the commercial-activated carbon are 92.2659 RE%, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. In the algae case, the best experimental and predicted removal efficiencies are 85.9407 %RE, 88.5 predicted RSM RE %, and 85.9431 expected ANN RE%. For the H3PO4 chemical activated carbon, the best experimental and predicted removal efficiencies are 89.6157%RE, 82.38 indicated RSM RE%, and 89.5442 predicted ANN RE%. For the physical-activated carbon, the best observed and predicted removal efficiencies are 94.7935 %RE, 95.49 predicted RSM RE%, and 95.4298 indicated ANN RE%. For the commercial-activated carbon, the best experimental and predicted removal efficiencies are 92.2659 %RE, 96.65 predicted RSM RE%, and 92.2658 predicted ANN RE%. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It then compares the results to the effectiveness of commercial activated carbon. In the state of the raw algae, Temkin and Langmuir isotherm models best suit the data, while Temkin agrees well with the data from physical-activated carbon. Temkin and Freundlich's models are fitted with the H3PO4 chemical activated carbon. The model that fits the raw algae physically activated carbon and H3PO4 chemical-activated carbon the best is pseudo-second-order kinetics. Future research could examine the produced activated carbon-based algae's capacity to extract more contaminants from contaminated wastewater. This study intends to treat industrial wastewater contaminated with the anionic M. orange dye using raw algae and their generated activated carbon (physical and chemical forms), which are economical. It next compares the results to the effectiveness of commercial activated carbon

    A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN

    No full text
    The textile business is one of the most hazardous industries since it produces several chemicals, such as dyes, which are released into water streams with ef-fluents. For the survival of the planet's life and the advancement of humanity, water is a crucial resource. One of the anthropogenic activities that pollute and consume water is the textile industry. Thus, the purpose of the current effort is to Apply coagulation as a Physico-chemical and biological treatment strat-egy with different techniques and mechanisms to treat the effluent streams of textile industries. The discharge of these effluents has a negative impact on the environment, marine life, and human health. Therefore, the treatment of these effluents before discharging is an important matter to reduce their adverse ef-fect. Many physico-chemical and biological treatment strategies for contaminants removal from polluted wastewater have been proposed. Coagulation is thought to be one of the most promising physico-chemical strategies for removing con-taminants and colouring pollutants from contaminated water. Coagulation is accompanied by a floculation process to aid precipitation, as well as the collection of the created sludge following the treatment phase.. Different commercial, and natural coagulants have been applied as a coagulants in the process of coagulation. Additionally, many factors such as; pH, coagulant dose, pollu-tants concentration are optimized to obtain high coagulants removal capacity. This review will discuss the coagulation process, coagulant types and aids in addition to the factors affecting the coagulation process. Additionally, a brief comparison between the coagulation process, and the other processes; princi-ple, advantages, disadvantages, and their efficiency were discussed throgh the review. Furthermore, it discusses the models and optimization techniques used for the coagulation process including response surface methodology (RSM), ar-tificial neural network (ANN), and several metaheuristic algorithms combined with ANN and RSM for optimization in previous work. The ANN model has more accurate results than RSM. The ANN combined with genetic algorithm gives an accurate predicted optimum solution

    Surgical site infection after gastrointestinal surgery in children : an international, multicentre, prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings. Methods A multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI). Results Of 1159 children across 181 hospitals in 51 countries, 523 (45 center dot 1%) children were from high HDI, 397 (34 center dot 2%) from middle HDI and 239 (20 center dot 6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12 center dot 8% (51/397) in middle HDI and 24 center dot 7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI. Conclusion The odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda.Peer reviewe

    Exploring the cost-effectiveness of high versus low perioperative fraction of inspired oxygen in the prevention of surgical site infections among abdominal surgery patients in three low- and middle-income countries

    No full text
    Background: This study assessed the potential cost-effectiveness of high (80–100%) vs low (21–35%) fraction of inspired oxygen (FiO2) at preventing surgical site infections (SSIs) after abdominal surgery in Nigeria, India, and South Africa. Methods: Decision-analytic models were constructed using best available evidence sourced from unbundled data of an ongoing pilot trial assessing the effectiveness of high FiO2, published literature, and a cost survey in Nigeria, India, and South Africa. Effectiveness was measured as percentage of SSIs at 30 days after surgery, a healthcare perspective was adopted, and costs were reported in US dollars ().Results:HighFiO2maybecosteffective(cheaperandeffective).InNigeria,theaveragecostforhighFiO2was). Results: High FiO2 may be cost-effective (cheaper and effective). In Nigeria, the average cost for high FiO2 was 216 compared with 222forlowFiO2leadingtoa 222 for low FiO2 leading to a −6 (95% confidence interval [CI]: −13to 13 to −1) difference in costs. In India, the average cost for high FiO2 was 184comparedwith184 compared with 195 for low FiO2 leading to a −11(9511 (95% CI: −15 to −6)differenceincosts.InSouthAfrica,theaveragecostforhighFiO2was6) difference in costs. In South Africa, the average cost for high FiO2 was 1164 compared with 1257forlowFiO2leadingtoa 1257 for low FiO2 leading to a −93 (95% CI: −132to 132 to −65) difference in costs. The high FiO2 arm had few SSIs, 7.33% compared with 8.38% for low FiO2, leading to a −1.05 (95% CI: −1.14 to −0.90) percentage point reduction in SSIs. Conclusion: High FiO2 could be cost-effective at preventing SSIs in the three countries but further data from large clinical trials are required to confirm this
    corecore