29 research outputs found

    Ground-Based measurements of the 2014-2015 holuhraun volcanic cloud (Iceland)

    Get PDF
    The 2014-2015 Bárðarbunga fissure eruption at Holuhraun in central Iceland was distinguished by the high emission of gases, in total 9.6 Mt SO2, with almost no tephra. This work collates all ground-based measurements of this extraordinary eruption cloud made under particularly challenging conditions: remote location, optically dense cloud with high SO2 column amounts, low UV intensity, frequent clouds and precipitation, an extensive and hot lava field, developing ramparts, and high-latitude winter conditions. Semi-continuous measurements of SO2 flux with three scanning DOAS instruments were augmented by car traverses along the ring-road and along the lava. The ratios of other gases/SO2 were measured by OP-FTIR, MultiGAS, and filter packs. Ratios of SO2/HCl = 30-110 and SO2/HF = 30-130 show a halogen-poor eruption cloud. Scientists on-site reported extremely minor tephra production during the eruption. OPC and filter packs showed low particle concentrations similar to non-eruption cloud conditions. Three weather radars detected a droplet-rich eruption cloud. Top of eruption cloud heights of 0.3-5.5 km agl were measured with ground-and aircraft-based visual observations, web camera and NicAIR II infrared images, triangulation of scanning DOAS instruments, and the location of SO2 peaks measured by DOAS traverses. Cloud height and emission rate measurements were critical for initializing gas dispersal simulations for hazard forecasting

    Mutation analysis of the CHK2 gene in breast carcinoma and other cancers

    Get PDF
    BACKGROUND: Mutations in the CHK2 gene at chromosome 22q12.1 have been reported in families with Li-Fraumeni syndrome. Chk2 is an effector kinase that is activated in response to DNA damage and is involved in cell-cycle pathways and p53 pathways. METHODS: We screened 139 breast tumors for loss of heterozygosity at chromosome 22q, using seven microsatellite markers, and screened 119 breast tumors with single-strand conformation polymorphism and DNA sequencing for mutations in the CHK2 gene. RESULTS: Seventy-four of 139 sporadic breast tumors (53%) show loss of heterozygosity with at least one marker. These samples and 45 tumors from individuals carrying the BRCA2 999del5 mutation were screened for mutations in the CHK2 gene. In addition to putative polymorphic regions in short mononucleotide repeats in a non-coding exon and intron 2, a germ line variant (T59K) in the first coding exon was detected. On screening 1172 cancer patients for the T59K sequence variant, it was detected in a total of four breast-cancer patients, two colon-cancer patients, one stomach-cancer patient and one ovary-cancer patient, but not in 452 healthy individuals. A tumor-specific 5' splice site mutation at site +3 in intron 8 (TTgt [a → c]atg) was also detected. CONCLUSION: We conclude that somatic CHK2 mutations are rare in breast cancer, but our results suggest a tumor suppressor function for CHK2 in a small proportion of breast tumors. Furthermore, our results suggest that the T59K CHK2 sequence variant is a low-penetrance allele with respect to tumor growth

    Regular Patterns for Proteome-Wide Distribution of Protein Abundance across Species

    Get PDF
    A proteome of the bio-entity, including cell, tissue, organ, and organism, consists of proteins of diverse abundance. The principle that determines the abundance of different proteins in a proteome is of fundamental significance for an understanding of the building blocks of the bio-entity. Here, we report three regular patterns in the proteome-wide distribution of protein abundance across species such as human, mouse, fly, worm, yeast, and bacteria: in most cases, protein abundance is positively correlated with the protein's origination time or sequence conservation during evolution; it is negatively correlated with the protein's domain number and positively correlated with domain coverage in protein structure, and the correlations became stronger during the course of evolution; protein abundance can be further stratified by the function of the protein, whereby proteins that act on material conversion and transportation (mass category) are more abundant than those that act on information modulation (information category). Thus, protein abundance is intrinsically related to the protein's inherent characters of evolution, structure, and function

    Loss of heterozygosity at chromosome 1p in different solid human tumours: association with survival

    Get PDF
    The distal half of chromosome 1p was analysed with 15 polymorphic microsatellite markers in 683 human solid tumours at different locations. Loss of heterozygosity (LOH) was observed at least at one site in 369 cases or 54% of the tumours. LOHs detected ranged from 30–64%, depending on tumour location. The major results regarding LOH at different tumour locations were as follows: stomach, 20/38 (53%); colon and rectum, 60/109 (55%); lung, 38/63 (60%); breast, 145/238 (61%); endometrium, 18/25 (72%); ovary, 17/31 (55%); testis, 11/30 (37%); kidney, 22/73 (30%); thyroid, 4/14 (29%); and sarcomas, 9/14 (64%). High percentages of LOH were seen in the 1p36.3, 1p36.1, 1p35–p34.3, 1p32 and 1p31 regions, suggesting the presence of tumour-suppressor genes. All these regions on chromosome 1p show high LOH in more than one tumour type. However, distinct patterns of LOH were detected at different tumour locations. There was a significant separation of survival curves, with and without LOH at chromosome 1p, in the breast cancer patients. Multivariate analysis showed that LOH at 1p in breast tumours is a better indicator for prognosis than the other variables tested in our model, including nodal metastasis. © 1999 Cancer Research Campaig

    Cereal Domestication and Evolution of Branching: Evidence for Soft Selection in the Tb1 Orthologue of Pearl Millet (Pennisetum glaucum [L.] R. Br.)

    Get PDF
    BACKGROUND: During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1) in maize. We investigate the role of the Tb1 orthologue (Pgtb1) in the domestication of pearl millet (Pennisetum glaucum), an African outcrossing cereal. METHODOLOGY/PRINCIPAL FINDINGS: Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1). Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet). Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. CONCLUSIONS/SIGNIFICANCE: Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain why the selective sweep in pearl millet is softer than in maize

    Local-Scale Patterns of Genetic Variability, Outcrossing, and Spatial Structure in Natural Stands of Arabidopsis thaliana

    Get PDF
    As Arabidopsis thaliana is increasingly employed in evolutionary and ecological studies, it is essential to understand patterns of natural genetic variation and the forces that shape them. Previous work focusing mostly on global and regional scales has demonstrated the importance of historical events such as long-distance migration and colonization. Far less is known about the role of contemporary factors or environmental heterogeneity in generating diversity patterns at local scales. We sampled 1,005 individuals from 77 closely spaced stands in diverse settings around Tübingen, Germany. A set of 436 SNP markers was used to characterize genome-wide patterns of relatedness and recombination. Neighboring genotypes often shared mosaic blocks of alternating marker identity and divergence. We detected recent outcrossing as well as stretches of residual heterozygosity in largely homozygous recombinants. As has been observed for several other selfing species, there was considerable heterogeneity among sites in diversity and outcrossing, with rural stands exhibiting greater diversity and heterozygosity than urban stands. Fine-scale spatial structure was evident as well. Within stands, spatial structure correlated negatively with observed heterozygosity, suggesting that the high homozygosity of natural A. thaliana may be partially attributable to nearest-neighbor mating of related individuals. The large number of markers and extensive local sampling employed here afforded unusual power to characterize local genetic patterns. Contemporary processes such as ongoing outcrossing play an important role in determining distribution of genetic diversity at this scale. Local “outcrossing hotspots” appear to reshuffle genetic information at surprising rates, while other stands contribute comparatively little. Our findings have important implications for sampling and interpreting diversity among A. thaliana accessions

    Natural Selection Affects Multiple Aspects of Genetic Variation at Putatively Neutral Sites across the Human Genome

    Get PDF
    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore