450 research outputs found

    Effects of Nitisinone on Oxidative and Inflammatory Markers in Alkaptonuria: Results from SONIA1 and SONIA2 Studies

    Get PDF
    Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis. © 2022 by the authors

    Comparing the Phenylalanine/Tyrosine Pathway and Related Factors between Keratopathy and No-Keratopathy Groups as Well as between Genders in Alkaptonuria during Nitisinone Treatment

    Get PDF
    Nitisinone (NIT) causes tyrosinaemia and corneal keratopathy (KP), especially in men. However, the adaptation within the phenylalanine (PHE)/tyrosine (TYR) catabolic pathway during KP is not understood. The objective of this study is to assess potential differences in the PHE/TYR pathway during KP and the influence of gender in NIT-induced tyrosinaemia in alkaptonuria (AKU). Samples of serum and 24 h urine collected from patients treated with NIT during a 4-year randomized study in NIT vs. no-treatment controls (SONIA 2; Suitability Of Nitisinone In Alkaptonuria 2; EudraCT no. 2013-001633-41) at months 3 (V2), 12 (V3), 24 (V4), 36 (V5) and 48 (V6) were included in these analyses. Homogentisic acid (HGA), TYR, PHE, hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and sNIT were analysed at all time-points in serum and urine in the NIT-group. All statistical analyses were post hoc. Keratopathy occurred in 10 out of 69 AKU patients, eight of them male. Thirty-five sampling points (serum and 24 h urine) were analysed in patients experiencing KP and 272 in those with no-KP (NKP) during NIT therapy. The KP group had a lower HPLA/TYR ratio and a higher TYR/PHE ratio compared with the NKP group (p < 0.05 for both). There were 24, 45, 100 and 207 sampling points (serum and 24 h urine) in the NIT group which were pre-NIT female, pre-NIT male, NIT female and NIT male, respectively. The PHE/TYR ratio and the HPLA/TYR ratio were lower in males (p < 0.001 and p < 0.01, respectively). In the KP group and in the male group during NIT therapy, adaptive responses to minimise TYR formation were impaired compared to NKP group and females, respectively

    Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid excretion in patients with alkaptonuria after 4 weeks of treatment.

    Get PDF
    BACKGROUND: Alkaptonuria (AKU) is a serious genetic disease characterised by premature spondyloarthropathy. Homogentisate-lowering therapy is being investigated for AKU. Nitisinone decreases homogentisic acid (HGA) in AKU but the dose-response relationship has not been previously studied. METHODS: Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1) was an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study. The primary objective was to investigate the effect of different doses of nitisinone once daily on 24-h urinary HGA excretion (u-HGA24) in patients with AKU after 4 weeks of treatment. Forty patients were randomised into five groups of eight patients each, with groups receiving no treatment or 1 mg, 2 mg, 4 mg and 8 mg of nitisinone. FINDINGS: A clear dose-response relationship was observed between nitisinone and the urinary excretion of HGA. At 4 weeks, the adjusted geometric mean u-HGA24 was 31.53 mmol, 3.26 mmol, 1.44 mmol, 0.57 mmol and 0.15 mmol for the no treatment or 1 mg, 2 mg, 4 mg and 8 mg doses, respectively. For the most efficacious dose, 8 mg daily, this corresponds to a mean reduction of u-HGA24 of 98.8% compared with baseline. An increase in tyrosine levels was seen at all doses but the dose-response relationship was less clear than the effect on HGA. Despite tyrosinaemia, there were no safety concerns and no serious adverse events were reported over the 4 weeks of nitisinone therapy. CONCLUSIONS: In this study in patients with AKU, nitisinone therapy decreased urinary HGA excretion to low levels in a dose-dependent manner and was well tolerated within the studied dose range. TRIAL REGISTRATION NUMBER: EudraCT number: 2012-005340-24. Registered at ClinicalTrials.gov: NCTO1828463

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
    corecore