33 research outputs found
The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer
Alternative splicing allows for the expression of multiple RNA and protein isoforms from one gene, making it a major contributor to transcriptome and proteome diversification in eukaryotes. Advances in next generation sequencing technologies and genome-wide analyses have recently underscored the fact that the vast majority of multi-exon genes under normal physiology engage in alternative splicing in tissue-specific and developmental-specific manner. On the other hand, cancer cells exhibit remarkable transcriptome alterations partly by adopting cancer-specific splicing isoforms. These isoforms and their encoded proteins are not insignificant byproducts of the abnormal physiology of cancer cells, but either drivers of cancer progression or small but significant contributors to specific cancer hallmarks. Thus, it is paramount that the pathways that regulate alternative splicing in cancer, including the splicing factors that bind to pre-mRNAs and modulate spliceosome recruitment. In this review, we present a few distinct cases of alternative splicing in cancer, with an emphasis on their regulation as well as their contribution to cancer cell phenotype. Several categories of splicing aberrations are highlighted, including alterations in cancer-related genes that directly affect their pre-mRNA splicing, mutations in genes encoding splicing factors or core spliceosomal subunits, and the seemingly mutation-free disruptions in the balance of the expression of RNA-binding proteins, including components of both the major (U2-dependent) and minor (U12-dependent) spliceosomes. Given that the latter two classes cause global alterations in splicing that affect a wide range of genes, it remains a challenge to identify the ones that contribute to cancer progression. These challenges necessitate a systematic approach to decipher these aberrations and their impact on cancer. Ultimately, a sufficient understanding of splicing deregulation in cancer is predicted to pave the way for novel and innovative RNA-based therapies
Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo
Background: Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct
pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of
immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated
myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences
and is much less pathogenic, with only a few reported cases of leukemia and neurological disease
associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes
regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production
and are critical for efficient viral replication and pathogenesis. Using an over-expression system
approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open
reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex
by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and
virion production. Further characterization revealed that p28 was distinct from p30 in that it was
devoid of major transcriptional modulating activity, suggesting potentially divergent functions that
may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2.
Results: In this study, we investigated the functional significance of p28 in HTLV-2 infection,
proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious
rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28) was generated and evaluated.
Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type
HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated
with HTLV-2Δp28 and the mutant virus failed to establish persistent infection.
Conclusion: We provide direct evidence that p28 is dispensable for viral replication and cellular
immortalization of primary T-lymphocytes in cell culture. However, our data indicate that p28
function is critical for viral survival in vivo. Our results are consistent with the hypothesis that p28
repression of Tax and Rex-mediated viral gene expression may facilitate survival of these cells by
down-modulating overall viral gene expression
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Perspective Chapter: The Toxic Silver (Hg)
In the late 1950s, residents of a Japanese fishing village known as “Minamata” began falling ill and dying at an alarming rate. The Japanese authorities stated that methyl-mercury-rich seafood and shellfish caused the sickness. Burning fossil fuels represent ≈52.7% of Hg emissions. The majorities of mercury’s compounds are volatile and thus travel hundreds of miles with wind before being deposited on the earth’s surface. High acidity and dissolved organic carbon increase Hg-mobility in soil to enter the food chain. Additionally, Hg is taken up by areal plant parts via gas exchange. Mercury has no identified role in plants while exhibiting high affinity to form complexes with soft ligands such as sulfur and this consequently inactivates amino acids and sulfur-containing antioxidants. Long-term human exposure to Hg leads to neurotoxicity in children and adults, immunological, cardiac, and motor reproductive and genetic disorders. Accordingly, remediating contaminated soils has become an obligation. Mercury, like other potentially toxic elements, is not biodegradable, and therefore, its remediation should encompass either removal of Hg from soils or even its immobilization. This chapter discusses Hg’s chemical behavior, sources, health dangers, and soil remediation methods to lower Hg levels
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
Human T-Cell Leukemia Virus Open Reading Frame II Encodes a Posttranscriptional Repressor That Is Recruited at the Level of Transcription
Human T-cell leukemia virus (HTLV) infection is a chronic, lifelong infection that is associated with the development of leukemia and neurological disease after a long latency period, and the mechanism by which the virus is able to evade host immune surveillance is elusive. Besides the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory (open reading frame I [ORF I] and ORF II) proteins. Tax activates viral and cellular transcription and promotes T-cell growth and malignant transformation. Rex acts posttranscriptionally to facilitate cytoplasmic expression of incompletely spliced viral mRNAs. Recently, we reported that the accessory gene products of HTLV-1 and HTLV-2 ORF II (p30(II) and p28(II), respectively) are able to restrict viral replication. These proteins act as negative regulators of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Here, we show that p28(II) is recruited to the viral promoter in a Tax-dependent manner. After recruitment to the promoter, p28(II) or p30(II) then travels with the transcription elongation machinery until its target mRNA is synthesized. Experiments artificially directing these proteins to the promoter indicate that p28(II), unlike HTLV-1 p30(II), displays no transcriptional activity. Furthermore, the tethering of p28(II) directly to tax/rex mRNA resulted in repression of Tax function, which could be attributed to the ability of p28(II) to block TAP/p15-mediated enhancement of Tax expression. p28(II)-mediated reduction of viral replication in infected cells may permit survival of the cells by allowing escape from immune recognition, which is consistent with the critical role of HTLV accessory proteins in viral persistence in vivo
Human T-Cell Leukemia Virus Type 1 Expressing Nonoverlapping Tax and Rex Genes Replicates and Immortalizes Primary Human T Lymphocytes but Fails To Replicate and Persist In Vivo
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus associated primarily with adult T-cell leukemia and neurological disease. HTLV-1 encodes the positive trans-regulatory proteins Tax and Rex, both of which are essential for viral replication. Tax activates transcription initiation from the viral long terminal repeat and modulates the transcription or activity of a number of cellular genes. Rex regulates gene expression posttranscriptionally by facilitating the cytoplasmic expression of incompletely spliced viral mRNAs. Tax and Rex mutants have been identified that have defective activities or impaired biochemical properties associated with their function. To ultimately determine the contribution of specific protein activities on viral replication and cellular transformation of primary T cells, mutants need to be characterized in the context of an infectious molecular clone. Since the tax and rex genes are in partially overlapping reading frames, mutation in one gene frequently disrupts the other, confounding interpretation of mutational analyses in the context of the virus. Here we generated and characterized a unique proviral clone (H1IT) in which the tax and rex genes were separated by expressing Tax from an internal ribosome entry site. We showed that H1IT expresses both functional Tax and Rex. In short- and long-term coculture assays, H1IT was competent to infect and immortalize primary human T cells similar to wild-type HTLV-1. In contrast, H1IT failed to efficiently replicate and persist in inoculated rabbits, thus emphasizing the importance of temporal and quantitative regulation of specific mRNA for viral survival in vivo
Scalable Generation of Mesenchymal Stem Cells and Adipocytes from Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) can provide unlimited supply for mesenchymal stem cells (MSCs) and adipocytes that can be used for therapeutic applications. Here we developed a simple and highly efficient all-trans-retinoic acid (RA)-based method for generating an off-the-shelf and scalable number of human pluripotent stem cell (hPSC)-derived MSCs with enhanced adipogenic potential. We showed that short exposure of multiple hPSC lines (hESCs/hiPSCs) to 10 μM RA dramatically enhances embryoid body (EB) formation through regulation of genes activating signaling pathways associated with cell proliferation, survival and adhesion, among others. Disruption of cell adhesion induced the subsequent differentiation of the highly expanded RA-derived EB-forming cells into a pure population of multipotent MSCs (up to 1542-fold increase in comparison to RA-untreated counterparts). Interestingly, the RA-derived MSCs displayed enhanced differentiation potential into adipocytes. Thus, these findings present a novel RA-based approach for providing an unlimited source of MSCs and adipocytes that can be used for regenerative medicine, drug screening and disease modeling applications
Creatine kinase and alpha-fetoprotein as biochemical markers in diagnosis of placenta increta and percreta
Background: placenta accreta is a life-threatening pregnancy complication which usually accompanied with placenta previa. It is important to make the diagnosis before delivery therefore a preoperative planning will decrease complications. The aim of this study: was to compare between creatine kinase and α-fetoprotein as biological markers with ultrasound & Doppler findings for the sake of prenatal detection of morbid placentation in anterior placenta on scar of previous cesarean section. Patients and Methods: The present study was Prospective cohort observational study carried out at Beni Suef University Maternity Hospital and MUST Teaching Hospital. Women were recruited from the outpatient obstetrics clinic or emergency room and admitted to antepartum inpatient high risk service. Results: This study showed a significant increase in both CK (p value =0.014) and msAFP (P value=0.028) levels in cases compared to the control group.